Computer Simulation of Electron and Proton Transfer
电子和质子转移的计算机模拟
基本信息
- 批准号:8575914
- 负责人:
- 金额:$ 31.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1988
- 资助国家:美国
- 起止时间:1988-07-01 至 2017-07-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingArrhythmiaBacteriorhodopsinsBiochemicalBiologicalCarrier ProteinsCellsCerealsChargeChemicalsComputer SimulationCoupledCytochromesDependenceDevelopmentDiabetes MellitusDiseaseElectrodesElectrolytesElectron TransportElectronsF0 ATPaseGenerationsGramicidinGrantIon ChannelIon TransportIonsKv1.2&apos channelLifeMalignant NeoplasmsMembraneMembrane PotentialsMembrane ProteinsMethodsModelingMolecularMutationOsteoporosisOxidasesOxidation-ReductionPathway interactionsPharmaceutical PreparationsPilot ProjectsPlayPositioning AttributeProcessProteinsProton PumpProtonsReactionResearchRoleRotationSignal TransductionSimulateStagingStructureSystemTherapeutic InterventionTimeTransport ProcessUlcerValidationWaterWorkarmbasebiological systemscytochrome c oxidasedrug developmentdrug discoveryfightingfrontiermethod developmentmulti-scale modelingoperationpH gradientpublic health relevancerelating to nervous systemsimulationsynergismtoolvalidation studiesvoltagewater channel
项目摘要
DESCRIPTION (provided by applicant): Proteins that control the transport of electrons, protons and ions underpin basic functions of living cells and are crucial to many life processes. For example, electron transfer (ET) and proton transport (PTR) combine to produce electrochemical gradients across membranes, which are then used to produce ATP. Similarly, ion channels play a vital role in neural signal transduction and other functions. Since mutations that disrupt the action of such proteins are associated with many diseases, these proteins present major targets for therapeutic intervention and play a central role in drug discovery efforts. However, further advances in rational drug development should be helped significantly by augmenting the progress in structural and biochemical studies by approaches that would provide the needed quantitative structure- function correlations. Thus, it is important to develop,
refine and apply quantitative computer simulations tools for this purpose. Major progress in method development and validation, as well as pilot studies of key systems have placed this research effort in a pivotal position, where it can progress in providing quantitative structure function correlations of PTR, ion transport and ET. Thus, parallel advances in following directions are proposed: Aim 1 - Biological PTR - The method developed in the grant allows one to quantify the action of key proton-conducting systems. Thus, the proposed projects include: (i) Exploring the gating mechanism of the Cytochrome C oxidase (CcO), while focusing on well-defined proton channels. (ii) Our recent breakthrough in modeling the conversion of pH gradients to vectorial rotation in the F0-ATPase will be quantified, striving to gain a better understanding of the proton paths. (iii) The voltage activated PTR in Hv1 will be explored (iv) The progress in coarse grained (CG) modeling of the membrane potential will be exploited in interpreting the observed relationship between the effect of the membrane potential and the PT paths in CcO. (v) The study of the early PTR in bacteriorhodopsin will be extended, focusing on subsequent steps. Aim 2 - Biological control of ion transport - Our advances in CG modeling of the membrane potential will be exploited in further studies of the action of voltage-activated ion channels and the control of selectivity of ion channels. Aim3 - ET Processes - ET and ET/PT in CcO will be explored. Aim4 - Validations - Crucial validation of the different models will be conducted. 1
描述(由申请人提供):控制电子、质子和离子传输的蛋白质支撑着活细胞的基本功能,对许多生命过程至关重要。例如,电子传递 (ET) 和质子传递 (PTR) 结合产生跨膜电化学梯度,然后用于产生 ATP。同样,离子通道在神经信号转导和其他功能中发挥着至关重要的作用。由于破坏此类蛋白质作用的突变与许多疾病有关,因此这些蛋白质是治疗干预的主要目标,并在药物发现工作中发挥着核心作用。然而,通过提供所需的定量结构-功能相关性的方法来促进结构和生化研究的进展,应该会大大有助于合理药物开发的进一步进展。因此,重要的是要发展,
为此目的完善和应用定量计算机模拟工具。方法开发和验证方面的重大进展以及关键系统的试点研究使这项研究工作处于关键地位,可以在提供 PTR、离子输运和 ET 的定量结构功能相关性方面取得进展。因此,提出了以下方向的并行进展: 目标 1 - 生物 PTR - 拨款中开发的方法允许人们量化关键质子传导系统的作用。因此,拟议的项目包括: (i) 探索细胞色素 C 氧化酶 (CcO) 的门控机制,同时重点关注明确的质子通道。 (ii) 我们最近在模拟 pH 梯度到 F0-ATPase 中矢量旋转的转换方面取得的突破将被量化,努力更好地了解质子路径。 (iii) 将探索 Hv1 中的电压激活 PTR (iv) 将利用膜电位粗粒度 (CG) 建模的进展来解释观察到的膜电位效应与 CcO 中 PT 路径之间的关系。 (v) 将扩展细菌视紫红质早期 PTR 的研究,重点关注后续步骤。目标 2 - 离子传输的生物控制 - 我们在膜电位 CG 建模方面的进展将用于进一步研究电压激活离子通道的作用和离子通道选择性的控制。目标 3 - ET 过程 - 将探讨 CcO 中的 ET 和 ET/PT。目标 4 - 验证 -将对不同模型进行关键验证。 1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ARIEH WARSHEL其他文献
ARIEH WARSHEL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ARIEH WARSHEL', 18)}}的其他基金
Multiscale Simulations of Biological Systems and Processes
生物系统和过程的多尺度模拟
- 批准号:
9922965 - 财政年份:2017
- 资助金额:
$ 31.27万 - 项目类别:
Multiscale Simulations of Biological Systems and Processes
生物系统和过程的多尺度模拟
- 批准号:
10709506 - 财政年份:2017
- 资助金额:
$ 31.27万 - 项目类别:
Multiscale Simulations of Biological Systems and Processes
生物系统和过程的多尺度模拟
- 批准号:
9275185 - 财政年份:2017
- 资助金额:
$ 31.27万 - 项目类别:
Multiscale Simulations of Biological Systems and Processes
生物系统和过程的多尺度模拟
- 批准号:
10406537 - 财政年份:2017
- 资助金额:
$ 31.27万 - 项目类别:
Computer Simulation Studies of the Origin of DNA Polymerase Fidelity
DNA 聚合酶保真度起源的计算机模拟研究
- 批准号:
8591706 - 财政年份:2013
- 资助金额:
$ 31.27万 - 项目类别:
Computer Simulation Studies of the Origin of DNA Polymerase
DNA聚合酶起源的计算机模拟研究
- 批准号:
7464334 - 财政年份:2008
- 资助金额:
$ 31.27万 - 项目类别:
Computer Simulation Studies of the Origin of DNA
DNA起源的计算机模拟研究
- 批准号:
6990383 - 财政年份:2004
- 资助金额:
$ 31.27万 - 项目类别:
相似海外基金
DEVELOPING A HUMAN STEM CELL-DERIVED HEART MODEL TO CHARACTERIZE A NOVEL ARRHYTHMIA SYNDROME
开发人类干细胞衍生的心脏模型来表征新型心律失常综合征
- 批准号:
495592 - 财政年份:2023
- 资助金额:
$ 31.27万 - 项目类别:
Preliminary Study to Establish Heavy Ion Ablation Therapy for Lethal Ventricular Arrhythmia
重离子消融治疗致死性室性心律失常的初步研究
- 批准号:
23K14885 - 财政年份:2023
- 资助金额:
$ 31.27万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Arrhythmia Mechanisms Modulated by Intercalated Disc Extracellular Nanodomains
闰盘细胞外纳米结构域调节心律失常的机制
- 批准号:
10668025 - 财政年份:2023
- 资助金额:
$ 31.27万 - 项目类别:
The role of inflammation in the pathogenesis of atrial fibrillation: Implications for atrial remodeling pathophysiology and for early atrial arrhythmia recurrences following radiofrequency ablation and pulsed field ablation
炎症在心房颤动发病机制中的作用:对心房重塑病理生理学以及射频消融和脉冲场消融后早期房性心律失常复发的影响
- 批准号:
514892030 - 财政年份:2023
- 资助金额:
$ 31.27万 - 项目类别:
WBP Fellowship
Development of a next-generation telemonitoring system for prognostic prediction of the onset of heart failure and arrhythmia
开发下一代远程监测系统,用于心力衰竭和心律失常发作的预后预测
- 批准号:
23K09597 - 财政年份:2023
- 资助金额:
$ 31.27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improved arrhythmia ablation via MR-guided robotic catheterization and multimodal clinician feedback
通过 MR 引导的机器人导管插入术和多模式临床医生反馈改善心律失常消融
- 批准号:
10638497 - 财政年份:2023
- 资助金额:
$ 31.27万 - 项目类别:
Prototype development and validation of soft robotic sensor arrays for mapping cardiac arrhythmia
用于绘制心律失常的软机器人传感器阵列的原型开发和验证
- 批准号:
10722857 - 财政年份:2023
- 资助金额:
$ 31.27万 - 项目类别:
The role N-terminal acetylation in dilated cardiomyopathy and associated arrhythmia
N-末端乙酰化在扩张型心肌病和相关心律失常中的作用
- 批准号:
10733915 - 财政年份:2023
- 资助金额:
$ 31.27万 - 项目类别:
A novel regulator of Ca2+ homeostasis and arrhythmia susceptibility
Ca2 稳态和心律失常易感性的新型调节剂
- 批准号:
10724935 - 财政年份:2023
- 资助金额:
$ 31.27万 - 项目类别:
Novel Stellate Ganglia Chemo-ablation Approach to Treat Cardiac Arrhythmia and Cardiac Remodeling in Heart Failure
新型星状神经节化疗消融方法治疗心律失常和心力衰竭心脏重塑
- 批准号:
10727929 - 财政年份:2023
- 资助金额:
$ 31.27万 - 项目类别:














{{item.name}}会员




