Nonparametric and Survival Methods in Ophthalmology

眼科非参数和生存方法

基本信息

  • 批准号:
    8504222
  • 负责人:
  • 金额:
    $ 42.35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-01 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

ABSTRACT Ophthalmic data is of necessity bivariate. Important information is lost when eye-specific outcome and exposure data are collapsed into person-specific scores. This necessitates adjustment to standard inferential methods to account for clustering. For example, mixed effects regression models are commonly used to model normally distributed longitudinal data, but require modification when clustering exists both among fellow eyes and repeat visits for an individual. However, many ocular measures are not normally distributed and nonparametric methods of longitudinal analysis are needed. We also consider nonparametric methods in the context of confounding by eye-specific covariates where a subject may be in different strata defined by confounders for the left and right eye. These are the goals of specific aim 1. Secondly, there have been major advances in risk prediction for AMD with the discovery of important genetic predictors. However, commonly used measures of discrimination and calibration of risk prediction rules require adjustment for correlated data. Furthermore, risk factors may vary by stage of maculopathy. This is the goal of specific aim 2. In specific aim 3, we seek to use empirical Bayes methods to better predict disease course for individual RP patients, where the number of follow-up visits and duration of follow-up differs for individual patients. In specific aim 3, we propose innovative techniques for disseminating information on correlated data methods to the ophthalmic community including periodic newsletters to NEI clinical trial investigators, giving education courses at ARVO and writing review papers on correlated data methods for ophthalmic journals.
摘要 眼科数据必然是双变量的。重要信息丢失时,眼睛具体 结果和暴露数据被分解成个人特定的分数。这需要 对标准推理方法进行调整以说明聚类。例如,混合 效应回归模型通常用于对正态分布的纵向数据建模, 但是当在对侧眼睛和重复访问之间都存在聚类时需要修改。 单独的.然而,许多眼部测量不是正态分布和非参数的 需要纵向分析方法。我们还考虑了非参数方法, 受试者可能处于不同分层的眼睛特异性协变量混杂背景 由左眼和右眼的混杂因素定义。这些是具体目标1的目标。 第二,随着以下发现,AMD的风险预测取得了重大进展: 重要的遗传预测因子。然而,普遍使用的歧视和 风险预测规则的校准需要对相关数据进行调整。此外,风险 因素可能因黄斑病变的阶段而异。这是具体目标2的目标。在具体目标3中, 我们寻求使用经验贝叶斯方法来更好地预测个体RP的病程 患者,其中随访访视次数和随访持续时间因个体而异 患者在具体目标3中,我们提出了传播信息的创新技术, 相关的数据方法,以眼科社区,包括定期通讯NEI 临床试验研究者,在ARVO提供教育课程,并撰写关于 眼科期刊的相关数据方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bernard A Rosner其他文献

Bernard A Rosner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bernard A Rosner', 18)}}的其他基金

Methodologic Innovations in Cancer Epidemiology
癌症流行病学的方法创新
  • 批准号:
    10655958
  • 财政年份:
    2023
  • 资助金额:
    $ 42.35万
  • 项目类别:
Nonparametric and Survival Methods in Ophthalmology
眼科非参数和生存方法
  • 批准号:
    8926995
  • 财政年份:
    2013
  • 资助金额:
    $ 42.35万
  • 项目类别:
Use of Correlated Data Methods in Ophthalmology
相关数据方法在眼科中的应用
  • 批准号:
    10542387
  • 财政年份:
    2013
  • 资助金额:
    $ 42.35万
  • 项目类别:
Nonparametric and Survival Methods in Ophthalmology
眼科非参数和生存方法
  • 批准号:
    8728251
  • 财政年份:
    2013
  • 资助金额:
    $ 42.35万
  • 项目类别:
Use of Correlated Data Methods in Ophthalmology
相关数据方法在眼科中的应用
  • 批准号:
    10364917
  • 财政年份:
    2013
  • 资助金额:
    $ 42.35万
  • 项目类别:
Bioinformatics Core
生物信息学核心
  • 批准号:
    8072432
  • 财政年份:
    2011
  • 资助金额:
    $ 42.35万
  • 项目类别:
Statistical Methods
统计方法
  • 批准号:
    7786696
  • 财政年份:
    2010
  • 资助金额:
    $ 42.35万
  • 项目类别:
STATISTICAL INNOVATIONS IN RISK MODELING
风险建模的统计创新
  • 批准号:
    7072373
  • 财政年份:
    2004
  • 资助金额:
    $ 42.35万
  • 项目类别:
Project 4: Statistical Innovations
项目 4:统计创新
  • 批准号:
    8793412
  • 财政年份:
    2000
  • 资助金额:
    $ 42.35万
  • 项目类别:
Statistical Methods for Ophthalmologic and Cluster Data
眼科和聚类数据的统计方法
  • 批准号:
    7456385
  • 财政年份:
    1998
  • 资助金额:
    $ 42.35万
  • 项目类别:

相似海外基金

ALPACA - Advancing the Long-range Prediction, Attribution, and forecast Calibration of AMOC and its climate impacts
APACA - 推进 AMOC 及其气候影响的长期预测、归因和预报校准
  • 批准号:
    2406511
  • 财政年份:
    2024
  • 资助金额:
    $ 42.35万
  • 项目类别:
    Standard Grant
New calibration standards and methods for radiometry and photometry after phaseout of incandescent lamps
淘汰白炽灯后辐射测量和光度测量的新校准标准和方法
  • 批准号:
    10086156
  • 财政年份:
    2023
  • 资助金额:
    $ 42.35万
  • 项目类别:
    EU-Funded
Neutrino oscillation at T2K and Hyper Kamiokande and development of the Hyper Kamiokande light injection calibration system
T2K 和 Hyper Kamiokande 的中微子振荡以及 Hyper Kamiokande 光注入校准系统的开发
  • 批准号:
    2888846
  • 财政年份:
    2023
  • 资助金额:
    $ 42.35万
  • 项目类别:
    Studentship
Collaborative Research: Calibration of Raman Spectroscopy for Calcite Saturation State in Marine Biogenic Calcification
合作研究:海洋生物钙化中方解石饱和状态的拉曼光谱校准
  • 批准号:
    2323221
  • 财政年份:
    2023
  • 资助金额:
    $ 42.35万
  • 项目类别:
    Standard Grant
SBIR Phase II: An innovative calibration software to suppress torque ripple and improve performance of electric motors.
SBIR Phase II:一款创新的校准软件,可抑制扭矩脉动并提高电动机的性能。
  • 批准号:
    2233023
  • 财政年份:
    2023
  • 资助金额:
    $ 42.35万
  • 项目类别:
    Cooperative Agreement
POSE: Phase II: Open-Source Precision, High Accuracy and Security Environment (OpenPHASE) For Time Verification, Calibration, and Interoperability
POSE:第二阶段:用于时间验证、校准和互操作性的开源精密、高精度和安全环境 (OpenPHASE)
  • 批准号:
    2303726
  • 财政年份:
    2023
  • 资助金额:
    $ 42.35万
  • 项目类别:
    Standard Grant
Spatial Calibration of Head-Mounted Displays Based on Implicit Function Representation of Light Fields Using Deep Learning
基于深度学习光场隐式函数表示的头戴式显示器空间校准
  • 批准号:
    23K16920
  • 财政年份:
    2023
  • 资助金额:
    $ 42.35万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of 3D calibration system in JSNS2 experiment
JSNS2实验中3D标定系统的开发
  • 批准号:
    23K13133
  • 财政年份:
    2023
  • 资助金额:
    $ 42.35万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
eMB: Collaborative Research: Discovery and calibration of stochastic chemical reaction network models
eMB:协作研究:随机化学反应网络模型的发现和校准
  • 批准号:
    2325184
  • 财政年份:
    2023
  • 资助金额:
    $ 42.35万
  • 项目类别:
    Standard Grant
CalibXBatt - Calibration of XCT-Automatic Defect Recognition for Battery Inspection [10050292]
CalibXBatt - 用于电池检查的 XCT 自动缺陷识别校准 [10050292]
  • 批准号:
    10061803
  • 财政年份:
    2023
  • 资助金额:
    $ 42.35万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了