Phase Contrast OCT for Non-Invasive Imaging of Retinovascular Disease
用于视网膜血管疾病非侵入性成像的相差 OCT
基本信息
- 批准号:8523954
- 负责人:
- 金额:$ 40.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-30 至 2015-05-31
- 项目状态:已结题
- 来源:
- 关键词:AgeAlgorithmsAmericanAngiographyBlindnessBlood CirculationBlood VesselsBlood capillariesCaringChoroidal NeovascularizationClassificationClinicalCommunitiesComputer softwareConsultDataData AnalysesDetectionDevelopmentDiabetic RetinopathyDiagnosisDiagnosticDiagnostic testsDiseaseDyesEarly DiagnosisEvaluationEyeFinancial compensationFluorescein AngiographyFundus photographyGoalsGoldImageImage AnalysisImageryImaging DeviceImaging technologyInformaticsLeadLegal patentMacular degenerationMethodsMicroaneurysmMotionMydriasisOphthalmologistOptical Coherence TomographyOpticsOptometristOutcomePatientsPerformancePhaseProcessProviderPupilReadingResearchResearch InfrastructureResolutionRetinalRetinal NeovascularizationSecondary toSolutionsSpecialistSpeedSystemTechniquesTechnologyTimeVascular DiseasesVisualWorkcapillarycommercial applicationcostdesignhead-to-head comparisonhigh riskimaging modalityimprovedinstrumentintravenous injectionneovascularizationpublic health relevancescreeningsoftware developmenttoolvisual feedback
项目摘要
DESCRIPTION (provided by applicant): Since its introduction in the 1960's, fluorescein angiography (FA) has been the gold standard for retinal vascular diagnosis. However, FA is costly, invasive, and time-consuming, which limits its usefulness as a screening tool. As a potential non-invasive alternative to FA for diagnosing retinovascular disease, we have developed an imaging method called phase contrast optical coherence tomography (PC-OCT). Our technology uses specialized software analysis of data acquired from clinically available optical coherence tomography imaging systems to provide an additional functionality of three-dimensional angiography. The majority of eye care in the US is currently performed by optometrists, and in many underserved communities, they are the sole providers. Unfortunately, most optometrists cannot perform FA due to its requirement for intravenous injection. Therefore, retinal vascular diagnostics are limited to clinical exam and fundus photography. Patients receiving optometric care would benefit from a non-invasive alternative to FA for improved screening of retinovascular diseases, especially in these underserved communities. PC-OCT has the potential to provide a low-cost and convenient vascular screening method, which could result in timely referrals to retinal specialists, as well as improved visual outcomes. To advance PC-OCT as a retinovascular imaging tool, we have the following goals: (1) develop PC-OCT software into a faster automated platform for application to commercial spectral domain (SD-OCT) systems; (2) optimize optical scanner performance for imaging both dilated and non-dilated pupils; and (3) demonstrate the feasibility of PC-OCT as a wide-field screening diagnostic for diabetic retinopathy. The visualization capabilities of PC-OCT imaging will be compared directly against fundus photography, the current diagnostic standard for eye care professionals. Successful completion of Phase II will result in an automated software package capable of producing PC-OCT microvascular images from the raw data of a commercial SD-OCT system, allowing for convenient vascular imaging accessible to all eye care practitioners. This could lead to better-quality detection capabilities for retinovascular disease and potentially
improved visual outcomes.
描述(由申请人提供):自20世纪60年代引入以来,荧光素血管造影术(FA)一直是视网膜血管诊断的金标准。然而,FA是昂贵的,侵入性的,耗时的,这限制了其作为筛查工具的有用性。作为一种潜在的非侵入性替代FA诊断视网膜血管疾病,我们已经开发出一种成像方法称为相位对比光学相干断层扫描(PC-OCT)。我们的技术使用专门的软件分析从临床可用的光学相干断层扫描成像系统获得的数据,以提供三维血管造影的附加功能。目前,美国的大部分眼科护理都是由验光师进行的,在许多服务不足的社区,他们是唯一的提供者。不幸的是,大多数验光师不能执行FA由于其需要静脉注射。因此,视网膜血管诊断仅限于临床检查和眼底照相。接受验光护理的患者将受益于非侵入性替代FA,以改善视网膜血管疾病的筛查,特别是在这些服务不足的社区。PC-OCT有可能提供一种低成本和方便的血管筛查方法,可以及时转诊给视网膜专家,并改善视力。为了推进PC-OCT作为视网膜血管成像工具,我们有以下目标:(1)将PC-OCT软件开发成更快的自动化平台,以应用于商业谱域(SD-OCT)系统;(2)优化光学扫描仪成像散瞳和非散瞳的性能;(3)证明PC-OCT作为糖尿病视网膜病变宽视野筛查诊断的可行性。PC-OCT成像的可视化能力将直接与眼底照相进行比较,眼底照相是眼科护理专业人员的当前诊断标准。第二阶段的成功完成将产生一个自动化软件包,该软件包能够从商业SD-OCT系统的原始数据中生成PC-OCT微血管图像,从而使所有眼科护理从业者都能方便地进行血管成像。这可能会导致更好的质量检测视网膜血管疾病的能力,并可能
改善视觉效果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(2)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SCOTT E FRASER其他文献
SCOTT E FRASER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SCOTT E FRASER', 18)}}的其他基金
Early tumorigenesis in vivo imaging, scRNA-seq to functional assays
早期肿瘤发生体内成像、scRNA-seq 到功能测定
- 批准号:
10355131 - 财政年份:2021
- 资助金额:
$ 40.41万 - 项目类别:
Early tumorigenesis in vivo imaging, scRNA-seq to functional assays
早期肿瘤发生体内成像、scRNA-seq 到功能测定
- 批准号:
10540327 - 财政年份:2021
- 资助金额:
$ 40.41万 - 项目类别:
In vivo imaging of tumor heterogeneity generation from endogenous single cells
内源性单细胞肿瘤异质性产生的体内成像
- 批准号:
9178032 - 财政年份:2016
- 资助金额:
$ 40.41万 - 项目类别:
Characterization of Exudative Macular Degeneration and Diabetic Retinopathy Using
使用渗出性黄斑变性和糖尿病视网膜病变的表征
- 批准号:
8002119 - 财政年份:2010
- 资助金额:
$ 40.41万 - 项目类别:
Phase Contrast OCT for Non-Invasive Imaging of Retinovascular Disease
用于视网膜血管疾病非侵入性成像的相差 OCT
- 批准号:
8658435 - 财政年份:2010
- 资助金额:
$ 40.41万 - 项目类别:
Functional analysis of neural crest & palate: Imaging craniofacial development
神经嵴功能分析
- 批准号:
8068282 - 财政年份:2009
- 资助金额:
$ 40.41万 - 项目类别:
Functional analysis of neural crest & palate: Imaging craniofacial development
神经嵴功能分析
- 批准号:
7935339 - 财政年份:2009
- 资助金额:
$ 40.41万 - 项目类别:
Functional analysis of neural crest & palate: Imaging craniofacial development
神经嵴功能分析
- 批准号:
8460776 - 财政年份:2009
- 资助金额:
$ 40.41万 - 项目类别:
Functional analysis of neural crest & palate: Imaging craniofacial development
神经嵴功能分析
- 批准号:
8271340 - 财政年份:2009
- 资助金额:
$ 40.41万 - 项目类别:
Functional analysis of neural crest & palate: Imaging craniofacial development
神经嵴功能分析
- 批准号:
8652033 - 财政年份:2009
- 资助金额:
$ 40.41万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 40.41万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 40.41万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 40.41万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 40.41万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 40.41万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 40.41万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 40.41万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 40.41万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 40.41万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 40.41万 - 项目类别:
Research Grant