Mining Social Network Postings for Mentions of Potential Adverse Drug Reactions
挖掘社交网络帖子中提及潜在药物不良反应的内容
基本信息
- 批准号:8222740
- 负责人:
- 金额:$ 36.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-10 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:Active LearningAddressAdverse drug effectAdverse effectsAdverse eventAdverse reactionsAgeAlgorithmsAttentionAwardCase StudyCause of DeathCharacteristicsClassificationClinical TrialsComplementComputer softwareDataData SourcesDatabasesDevelopmentDiagnosisDiseaseDrug usageElectronic Health RecordEpidemiologyEvaluationExclusion CriteriaGoalsGoldHealthHealth ProfessionalHumanInsuranceInterventionKnowledgeLong-Term EffectsMachine LearningMapsMarketingMeasuresMethodsMiningMonitorNatural Language ProcessingPatient Self-ReportPatientsPerformancePharmaceutical PreparationsPhasePhysiciansPopulationPredictive ValuePreparationProcessPublic HealthPublished CommentReactionReportingResearch DesignResearch InfrastructureResearch PersonnelSafetySchemeSemanticsSensitivity and SpecificitySentinelSignal TransductionSocial NetworkSourceSubgroupSystemTechniquesTerminologyTestingTextTimeTrainingUnified Medical Language SystemVariantWorkbasecase controlclinical trials in animalscohortdrug developmentdrug efficacyfollow-upinnovationlanguage processinglexicalnon-compliancepost-marketprogramsprototypesocial networking websitetool
项目摘要
DESCRIPTION (provided by applicant):
Drugs undergo extensive testing in animals and clinical trials in humans before they are marketed for widespread use in the population. Pre-market testing produces reasonably high quality information about the efficacy of the drug as a treatment for the condition for which it was approved, but gives a very incomplete picture of the drug's safety. Post-marketing surveillance currently relies mainly on voluntary reporting to the FDA by health care professionals (and recently, patients themselves) through MedWatch, the FDA's safety information and adverse event reporting program. Self-reported patient information captures a valuable perspective that has been found to be of similar quality to that provided by health professionals, and currently it is only captured via the formal MedWatch form. The overarching goal of this application is to deploy the infrastructure needed to explore the value of informal social network postings as a source of "signals" of potential adverse drug reactions soon after the drugs hit the market, paying particular attention at the value such information might have to detect adverse events earlier than currently possible, and to detect effects not easily captured by traditional means. Despite the significant challenge of processing colloquial text, our prototype study in this direction showed promising performance in identifying adverse reactions mentioned in these postings, with significant correlations between the effects mentioned by the public and those documented for the drugs we studied. Specific aims to be addressed include: 1). To establish the infrastructure that enables processing of online user comments about the drug on health-related social network websites. Particularly, we seek to recognize and extract mentions of adverse effects in those informal postings, and to map them to standard terminology. We will build on our preliminary lexical approach for finding the mentions, and propose a variation of machine learning (commonly referred to as active learning) where the machine learning framework has the ability to control what instances will be selected for use in the training data, among other innovative semantic approaches to normalization (mapping of the mentions to established, formal terms) and sentiment analysis (to discover whether a mention is reporting a positive or a negative effect); 2) To evaluate the sensitivity and specificity of the extraction and identification systems, as well as the predictive value of the extracted knowledge through specific case studies of a set of drugs with well known adverse reactions and by monitoring postings about a select group of drugs released since 2007. Our existing manually annotated gold standard will be expanded through a dedicated annotation effort led by a pharmacologist (Karen Smith). 3) To compare the knowledge extracted from patient comments to what is derived from the established drug safety monitoring scheme overseen by the FDA. We recognize that the data obtained through the deployed infrastructure would not be able to be used to define an ADR standing on its own. However, if this method is validated, it could provide useful signals to complement the already established processes and data sources.
描述(由申请人提供):
药物在上市并在人群中广泛使用之前,要经过广泛的动物测试和人体临床试验。上市前测试产生了关于该药物作为其被批准治疗的病症的疗效的相当高质量的信息,但对该药物的安全性给出了非常不完整的描述。目前,上市后监测主要依赖于医疗保健专业人员(最近还包括患者本人)通过 MedWatch(FDA 的安全信息和不良事件报告计划)向 FDA 自愿报告。自我报告的患者信息捕捉到了有价值的观点,这些观点被发现与卫生专业人员提供的信息具有相似的质量,但目前只能通过正式的 MedWatch 表格来捕捉。该应用程序的总体目标是部署所需的基础设施,以探索非正式社交网络帖子的价值,作为药物上市后不久的潜在药物不良反应“信号”来源,特别关注此类信息可能比目前更早检测不良事件的价值,并检测传统手段不易捕获的影响。尽管处理口语文本面临巨大挑战,但我们在这个方向上的原型研究在识别这些帖子中提到的不良反应方面表现出了良好的表现,公众提到的影响与我们研究的药物记录的影响之间存在显着相关性。需要解决的具体目标包括:1)。建立基础设施,以便能够处理健康相关社交网络网站上有关该药物的在线用户评论。特别是,我们试图识别和提取这些非正式帖子中提到的不利影响,并将其映射到标准术语。我们将基于初步的词汇方法来查找提及,并提出一种机器学习的变体(通常称为主动学习),其中机器学习框架能够控制选择哪些实例用于训练数据,以及其他创新的标准化语义方法(将提及映射到已建立的正式术语)和情感分析(以发现提及是否报告了积极或消极影响); 2) 通过对一组具有众所周知的不良反应的药物的具体案例研究,并通过监测 2007 年以来发布的一组精选药物的帖子,评估提取和识别系统的敏感性和特异性,以及所提取知识的预测价值。我们现有的手动注释金标准将通过药理学家(Karen Smith)领导的专门注释工作进行扩展。 3) 将从患者评论中提取的知识与从 FDA 监督的既定药物安全监测计划中获得的知识进行比较。我们认识到,通过部署的基础设施获得的数据无法用于定义独立的 ADR。然而,如果这种方法得到验证,它可以提供有用的信号来补充已经建立的流程和数据源。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GRACIELA GONZALEZ HERNANDEZ其他文献
GRACIELA GONZALEZ HERNANDEZ的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GRACIELA GONZALEZ HERNANDEZ', 18)}}的其他基金
Enriching SARS-CoV-2 sequence data in public repositories with information extracted from full text articles
利用从全文文章中提取的信息丰富公共存储库中的 SARS-CoV-2 序列数据
- 批准号:
10681068 - 财政年份:2022
- 资助金额:
$ 36.19万 - 项目类别:
Enriching SARS-CoV-2 sequence data in public repositories with information extracted from full text articles
利用从全文文章中提取的信息丰富公共存储库中的 SARS-CoV-2 序列数据
- 批准号:
10701081 - 财政年份:2021
- 资助金额:
$ 36.19万 - 项目类别:
Enriching SARS-CoV-2 sequence data in public repositories with information extracted from full text articles
利用从全文文章中提取的信息丰富公共存储库中的 SARS-CoV-2 序列数据
- 批准号:
10390667 - 财政年份:2021
- 资助金额:
$ 36.19万 - 项目类别:
Tracking Evolution and Spread of Viral Genomes by Geospatial Observation Error
通过地理空间观测误差追踪病毒基因组的进化和传播
- 批准号:
9249484 - 财政年份:2016
- 资助金额:
$ 36.19万 - 项目类别:
Text Processing and Geospatial Uncertainty for Phylogeography of Zoonotic Viruses
人畜共患病毒系统发育地理学的文本处理和地理空间不确定性
- 批准号:
8698542 - 财政年份:2013
- 资助金额:
$ 36.19万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 36.19万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 36.19万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 36.19万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 36.19万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 36.19万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 36.19万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 36.19万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 36.19万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 36.19万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 36.19万 - 项目类别:
Research Grant














{{item.name}}会员




