Social Media Mining for Pharmacovigilance
用于药物警戒的社交媒体挖掘
基本信息
- 批准号:10407315
- 负责人:
- 金额:$ 13.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-10 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdverse drug eventAdverse effectsAdverse eventAffectAgreementAlcohol consumptionAnimalsAntidepressive AgentsAreaBehaviorCase StudyCase-Control StudiesCenters for Disease Control and Prevention (U.S.)CharacteristicsClinicalClinical TrialsCollaborationsCollectionComplementCongenital AbnormalityConsentControl GroupsDataData SetData SourcesDevelopmentDiagnosisDrug usageElectronic Health RecordEvaluationEventFetal DeathFundingGeneral PopulationGoalsHealthHealth Care CostsHealth PersonnelHemorrhageHepaticHumanHypersensitivityIntakeInterventionKidneyKidney FailureLabelLeadLiteratureLive BirthLong-Term EffectsLow Birth Weight InfantMEDLINEManualsMarketingMedicalMethodsMiningModelingMonitorNatural Language ProcessingNon-Steroidal Anti-Inflammatory AgentsOutcomePatientsPersonsPharmaceutical PreparationsPhysiciansPregnancyPregnancy OutcomePregnant WomenPremature BirthPublic HealthPublicationsReference StandardsReportingResearchResearch PersonnelSafetySignal TransductionSmokingSourceSpontaneous abortionStandardizationSubgroupSymptomsSystemTestingTimeTimeLineUnified Medical Language SystemValidationVocabularyWorkcohortdosagedrug efficacyepidemiological modelepidemiology studyhealth dataindexinginnovationinterestlanguage processingmedication compliancemedication safetynovelpharmacovigilanceside effectsocial mediasystematic reviewtreatment duration
项目摘要
Project Summary
Drugs undergo extensive testing in animals and clinical trials in humans before they are marketed for
widespread use. Pre-market testing produces reasonably high quality information about the efficacy of the drug
as a treatment for the condition for which it was approved, but gives a very incomplete picture of the
drug's safety. It is only after a drug is marketed and used on a more widespread basis over longer periods of
time that it is possible to identify other effects, such as rare but serious adverse effects, or those that are more
common in the special subgroups excluded from the trial (such as pregnant women), or effects of long-term use
of the drug, among others. Despite the increase in research in the past years exploring social media data for
pharmacovigilance, and the evidence that it indeed can bring forward the patient perspective, there is no
systematic approach to collect and annotate such data for research purposes. This renewal builds on our prior
research and natural language processing (NLP) methods for social media mining in pharmacovigilance to
make the collection of social media data about medication use precise and systematic enough to be useful to
researchers and the public, alongside established sources such as the FDA's data and other public collections of
drug adverse event data. It presents innovative methods to automatically collect and analyze longitudinal
health data, piloting methods for interventions through the same media that can inform the public and help
validate the automatic methods. As validation, we include a comparison to an existing reference standard for
adverse effects that integrates FDA's data and HER data, as well as specific case studies focused on (Aim 3.1)
the use of NSAIDs and anti-depressants in pregnancy and (Aim 3.2) factors for non-adherence.
项目摘要
药物在上市前要经过广泛的动物试验和人体临床试验。
广泛使用。上市前测试产生了关于药物疗效的合理高质量信息
作为一种治疗的条件,它被批准,但给出了一个非常不完整的图片,
药物的安全性。只有当一种药物在更长的时间内被更广泛地销售和使用后,
有可能确定其他影响的时间,例如罕见但严重的不良反应,或那些更严重的不良反应。
常见于从试验中排除的特殊亚组(如孕妇),或长期使用的影响
药物,除此之外。尽管在过去几年中,探索社交媒体数据的研究有所增加,
药物警戒,以及它确实可以提出患者观点的证据,没有
为研究目的收集和注释此类数据的系统方法。这次更新建立在我们之前
研究和自然语言处理(NLP)方法,用于药物警戒中的社交媒体挖掘,
使有关药物使用的社交媒体数据的收集足够精确和系统,
研究人员和公众,以及已建立的来源,如FDA的数据和其他公共收集,
药物不良事件数据。它提出了创新的方法来自动收集和分析纵向
健康数据,通过可以告知公众并帮助
验证自动方法。作为验证,我们包括与现有参比标准品的比较,
整合FDA数据和HER数据的不良反应,以及重点关注的特定病例研究(目标3.1)
妊娠期使用NSAID和抗抑郁药以及(目标3.2)不依从因素。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GRACIELA GONZALEZ HERNANDEZ其他文献
GRACIELA GONZALEZ HERNANDEZ的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GRACIELA GONZALEZ HERNANDEZ', 18)}}的其他基金
Enriching SARS-CoV-2 sequence data in public repositories with information extracted from full text articles
利用从全文文章中提取的信息丰富公共存储库中的 SARS-CoV-2 序列数据
- 批准号:
10681068 - 财政年份:2022
- 资助金额:
$ 13.71万 - 项目类别:
Enriching SARS-CoV-2 sequence data in public repositories with information extracted from full text articles
利用从全文文章中提取的信息丰富公共存储库中的 SARS-CoV-2 序列数据
- 批准号:
10701081 - 财政年份:2021
- 资助金额:
$ 13.71万 - 项目类别:
Enriching SARS-CoV-2 sequence data in public repositories with information extracted from full text articles
利用从全文文章中提取的信息丰富公共存储库中的 SARS-CoV-2 序列数据
- 批准号:
10390667 - 财政年份:2021
- 资助金额:
$ 13.71万 - 项目类别:
Tracking Evolution and Spread of Viral Genomes by Geospatial Observation Error
通过地理空间观测误差追踪病毒基因组的进化和传播
- 批准号:
9249484 - 财政年份:2016
- 资助金额:
$ 13.71万 - 项目类别:
Text Processing and Geospatial Uncertainty for Phylogeography of Zoonotic Viruses
人畜共患病毒系统发育地理学的文本处理和地理空间不确定性
- 批准号:
8698542 - 财政年份:2013
- 资助金额:
$ 13.71万 - 项目类别:
Mining Social Network Postings for Mentions of Potential Adverse Drug Reactions
挖掘社交网络帖子中提及潜在药物不良反应的内容
- 批准号:
8222740 - 财政年份:2012
- 资助金额:
$ 13.71万 - 项目类别:
相似海外基金
Artificial intelligence-based health IT tools to optimize critical care pharmacist resources through adverse drug event prediction
基于人工智能的健康 IT 工具,通过药物不良事件预测来优化重症监护药剂师资源
- 批准号:
10503268 - 财政年份:2022
- 资助金额:
$ 13.71万 - 项目类别:
Comparison of Hemorrhagic Risk between Prasugrel and Clopidogrel: a Retrospective Study using Adverse Drug Event Reporting Databases
普拉格雷和氯吡格雷出血风险的比较:使用药物不良事件报告数据库的回顾性研究
- 批准号:
18K14954 - 财政年份:2018
- 资助金额:
$ 13.71万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Adverse Reactions to Potent Opioids: An analysis using the largescale Japanese Adverse Drug Event Report database
对强效阿片类药物的不良反应:使用大型日本药物不良事件报告数据库进行的分析
- 批准号:
15K08111 - 财政年份:2015
- 资助金额:
$ 13.71万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Implementation and Evaluation of an Enhanced PharmaNet-Based Adverse Drug Event Reporting Platform to Improve Patient Safety and Meet Adverse Drug Reaction Reporting Requirements
基于 PharmaNet 的增强型药品不良事件报告平台的实施和评估,以提高患者安全并满足药品不良反应报告要求
- 批准号:
334597 - 财政年份:2015
- 资助金额:
$ 13.71万 - 项目类别:
Operating Grants
EMR Adverse Drug Event Detection for Pharmacovigilance
用于药物警戒的 EMR 药物不良事件检测
- 批准号:
9123554 - 财政年份:2014
- 资助金额:
$ 13.71万 - 项目类别:
EMR Adverse Drug Event Detection for Pharmacovigilance
用于药物警戒的 EMR 药物不良事件检测
- 批准号:
8772667 - 财政年份:2014
- 资助金额:
$ 13.71万 - 项目类别:
Integration of spatial epidemiology and pharmacoepidemiology for the practical use of the adverse drug event report database with related applications
空间流行病学和药物流行病学的整合,用于药物不良事件报告数据库的实际使用及相关应用
- 批准号:
26540012 - 财政年份:2014
- 资助金额:
$ 13.71万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Epidemiology of Adverse Drug Event in intensive care unit (ICU) and neonatal ICU (NICU)
重症监护病房(ICU)和新生儿重症监护病房(NICU)药品不良事件流行病学
- 批准号:
25860484 - 财政年份:2013
- 资助金额:
$ 13.71万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Optimizing Adverse Drug Event Reporting within a Provincial Medication Information System to Improve Pharmacovigilence and Inform Pharmaceutical Policy
优化省级药品信息系统内的药品不良事件报告,以提高药物警戒并为药品政策提供信息
- 批准号:
284162 - 财政年份:2013
- 资助金额:
$ 13.71万 - 项目类别:
Fellowship Programs
Adverse Drug Event Reporting in PharmaNet to Improve Patient Safety and Inform Policy
PharmaNet 中的药物不良事件报告可提高患者安全并为政策提供信息
- 批准号:
273419 - 财政年份:2012
- 资助金额:
$ 13.71万 - 项目类别:
Operating Grants