Nutrient Sensing and Growth Control

营养感应和生长控制

基本信息

  • 批准号:
    8388767
  • 负责人:
  • 金额:
    $ 32.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-05-01 至 2016-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Cell growth and division requires the coordination of growth factor signaling and metabolic pathways. It is quite common that this coordination is deregulated in human malignancy. For example, ectopic activation of growth factor signaling pathways is ubiquitous in cancer and drives cell growth and division. Further, cancer cells also require an elevated supply of nutrients, e.g. glucose, glutamine and amino acids, to support their high growth and division rates. A prime example of nutrient deregulation in cancer is the oncogene-dependent upregulation of glucose transporters and glycolysis. The mTORC1 complex is one signaling node where these diverse stimuli converge and the activity of this growth-promoting complex is highest in cells with abundant nutrients and engaged growth factor signaling pathways. How nutrient availability and growth signals are coordinated at the transcriptional level is poorly understood, however, our studies on the MondoA:Mlx complex indicate a prominent role for this bHLHZip factor complex in this regard. MondoA is the primary glucose- regulated transcription factor in mammalian cells, yet signals from the mitochondrial TCA cycle also control MondoA transcriptional activity. Our published data show that high rates of glutaminolysis convert MondoA from a transcriptional activator to a transcriptional repressor. MondoA's downregulation of thioredoxin interacting protein (TXNIP) creates an environment that is permissive for both glucose uptake and glycolysis. The MondoA-TXNIP regulatory circuit further coordinates cell growth as the mTORC1 complex negatively regulates this circuit. This blockage of MondoA:Mlx transcriptional activity by mTORC1, likely contributes to mTORC1's well-documented function in driving glucose uptake and glycolysis. The importance of the MondoA-TXNIP regulatory circuit is underscored by its likely tumor suppressor function in both breast, ovarian, and potentially other cancers. In this application, we propose to study on how the MondoA:Mlx complex senses and responds to the TCA cycle intermediate a-ketoglutarate. We will also determine the transcriptional networks that are activated downstream of mitochondrial status and the dependence of these networks on MondoA. Next, we will determine how the transcriptional functions of MondoA:Mlx complexes are controlled by the mTORC1 complex and the breadth of this regulation. Finally, we will examine the role of the MondoA- TXNIP circuit as a growth/tumor suppressor in breast cancer using mouse models. These studies will lead to a deeper understanding of how diverse signals from growth factor signaling pathways, mitochondrial status and nutrient availability are integrated by the MondoA:Mlx complex. Given that the deregulation of these pathways is near universal in human malignancy, our hope is that this work will provide new avenues for therapeutic intervention in cancer. PUBLIC HEALTH RELEVANCE: How cells coordinate the utilization of nutrients with bioenergetic status contributes to cellular homeostasis. This coordination is often deregulated in human cancer underscoring its importance. Our lab is interested in a bHLHZip transcription factor called MondoA. MondoA is the primary glucose-regulated transcription factor in mammalian cells, yet mitochondrial status and the mTORC1 complex also regulate its activity. Here we propose to study how these different signals control the transcriptional activity of MondoA and how broadly MondoA contributes to the transcriptional programs driven by these different signals and how dysregulation of MondoA activity contributes to breast cancer.
描述(申请人提供):细胞的生长和分裂需要生长因子信号和代谢途径的协调。在人类的恶性肿瘤中,这种协调作用被解除调控是很常见的。例如,生长因子信号通路的异位激活在癌症中普遍存在,并推动细胞生长和分裂。此外,癌细胞还需要更多的营养物质,如葡萄糖、谷氨酰胺和氨基酸,以支持它们的高生长和分裂速率。癌症中营养失调的一个主要例子是癌基因依赖的葡萄糖转运蛋白上调和糖酵解。MTORC1复合体是这些不同刺激因子汇聚的一个信号节点,这种促生长复合体的活性在营养丰富和参与生长因子信号通路的细胞中最高。营养供应和生长信号如何在转录水平上协调尚不清楚,然而,我们对Mondoa:MLX复合体的研究表明,这种bHLHZip因子复合体在这方面发挥了重要作用。MondoA是哺乳动物细胞中主要的葡萄糖调节转录因子,然而来自线粒体TCA循环的信号也控制着Mondoa的转录活性。我们公布的数据表明,高速率的谷氨酰胺分解将Mondoa从转录激活因子转换为转录抑制因子。Mondoa对硫氧还蛋白相互作用蛋白(TXNIP)的下调为葡萄糖摄取和糖酵解创造了一个允许的环境。Mondoa-TXNIP调节电路进一步协调细胞生长,因为mTORC1复合体对该电路进行负调节。MTORC 1对MondoA:MLX转录活性的这种阻断可能有助于mTORC 1‘S在促进葡萄糖摄取和糖酵解中的作用。Mondoa-TXNIP调节电路的重要性被其在乳腺癌、卵巢癌和潜在的其他癌症中可能的肿瘤抑制功能所强调。在这个应用中,我们打算研究Mondoa:MLX复合体如何感知和响应中间α-酮戊二酸的TCA循环。我们还将确定线粒体状态下游激活的转录网络以及这些网络对Mondoa的依赖。接下来,我们将确定MondoA:MLX复合体的转录功能是如何受mTORC1复合体和该调控的广度控制的。最后,我们将使用小鼠模型研究Mondoa-TXNIP电路在乳腺癌中作为生长/肿瘤抑制因子的作用。这些研究将使我们更深入地理解Mondoa:MLX复合体如何整合来自生长因子信号通路、线粒体状态和营养可获得性的不同信号。鉴于这些途径的解除在人类恶性肿瘤中几乎是普遍的,我们希望这项工作将为癌症的治疗干预提供新的途径。 公共卫生相关性:细胞如何协调营养物质的利用与生物能量状态有助于细胞内稳态。在人类癌症中,这种协调经常被放松管制,这突显了它的重要性。我们实验室对一种名为Mondoa的bHLHZip转录因子感兴趣。MondoA是哺乳动物细胞中主要的葡萄糖调节转录因子,但线粒体状态和mTORC1复合体也调节其活性。在这里,我们建议研究这些不同的信号如何控制Mondoa的转录活性,Mondoa在多大程度上参与了这些不同信号驱动的转录程序,以及Mondoa活性的失调如何导致乳腺癌。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Donald E Ayer其他文献

Donald E Ayer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Donald E Ayer', 18)}}的其他基金

Huntsman Cancer Institute (HCI) Cancer Genetics, Epigenetics, Models, and Signaling (Cancer GEMS) Training Program
亨斯迈癌症研究所 (HCI) 癌症遗传学、表观遗传学、模型和信号传导(癌症 GEMS)培训计划
  • 批准号:
    10627604
  • 财政年份:
    2023
  • 资助金额:
    $ 32.89万
  • 项目类别:
Huntsman Cancer Institute PathMaker Programs for Cancer Research
亨斯迈癌症研究所癌症研究 PathMaker 计划
  • 批准号:
    10474257
  • 财政年份:
    2019
  • 资助金额:
    $ 32.89万
  • 项目类别:
Huntsman Cancer Institute PathMaker Programs for Cancer Research
亨斯迈癌症研究所癌症研究 PathMaker 计划
  • 批准号:
    10661674
  • 财政年份:
    2019
  • 资助金额:
    $ 32.89万
  • 项目类别:
Huntsman Cancer Institute PathMaker Programs for Cancer Research
亨斯迈癌症研究所癌症研究 PathMaker 计划
  • 批准号:
    9792209
  • 财政年份:
    2019
  • 资助金额:
    $ 32.89万
  • 项目类别:
Huntsman Cancer Institute PathMaker Programs for Cancer Research
亨斯迈癌症研究所癌症研究 PathMaker 计划
  • 批准号:
    10005296
  • 财政年份:
    2019
  • 资助金额:
    $ 32.89万
  • 项目类别:
Nutrient Sensing and Transcriptional Regulation
营养感应和转录调节
  • 批准号:
    10421294
  • 财政年份:
    2018
  • 资助金额:
    $ 32.89万
  • 项目类别:
Nutrient Sensing and Transcriptional Regulation
营养感应和转录调节
  • 批准号:
    10174861
  • 财政年份:
    2018
  • 资助金额:
    $ 32.89万
  • 项目类别:
Transcriptional control of skeletal muscle insulin resistance
骨骼肌胰岛素抵抗的转录控制
  • 批准号:
    8299142
  • 财政年份:
    2010
  • 资助金额:
    $ 32.89万
  • 项目类别:
Transcriptional control of skeletal muscle insulin resistance
骨骼肌胰岛素抵抗的转录控制
  • 批准号:
    8463513
  • 财政年份:
    2010
  • 资助金额:
    $ 32.89万
  • 项目类别:
Transcriptional control of skeletal muscle insulin resistance
骨骼肌胰岛素抵抗的转录控制
  • 批准号:
    7918568
  • 财政年份:
    2010
  • 资助金额:
    $ 32.89万
  • 项目类别:

相似海外基金

Double Incorporation of Non-Canonical Amino Acids in an Animal and its Application for Precise and Independent Optical Control of Two Target Genes
动物体内非规范氨基酸的双重掺入及其在两个靶基因精确独立光学控制中的应用
  • 批准号:
    BB/Y006380/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.89万
  • 项目类别:
    Research Grant
Quantifying L-amino acids in Ryugu to constrain the source of L-amino acids in life on Earth
量化 Ryugu 中的 L-氨基酸以限制地球生命中 L-氨基酸的来源
  • 批准号:
    24K17112
  • 财政年份:
    2024
  • 资助金额:
    $ 32.89万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Molecular recognition and enantioselective reaction of amino acids
氨基酸的分子识别和对映选择性反应
  • 批准号:
    23K04668
  • 财政年份:
    2023
  • 资助金额:
    $ 32.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Basic research toward therapeutic strategies for stress-induced chronic pain with non-natural amino acids
非天然氨基酸治疗应激性慢性疼痛策略的基础研究
  • 批准号:
    23K06918
  • 财政年份:
    2023
  • 资助金额:
    $ 32.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Molecular mechanisms how arrestins that modulate localization of glucose transporters are phosphorylated in response to amino acids
调节葡萄糖转运蛋白定位的抑制蛋白如何响应氨基酸而被磷酸化的分子机制
  • 批准号:
    23K05758
  • 财政年份:
    2023
  • 资助金额:
    $ 32.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Design and Synthesis of Fluorescent Amino Acids: Novel Tools for Biological Imaging
荧光氨基酸的设计与合成:生物成像的新工具
  • 批准号:
    2888395
  • 财政年份:
    2023
  • 资助金额:
    $ 32.89万
  • 项目类别:
    Studentship
Collaborative Research: RUI: Elucidating Design Rules for non-NRPS Incorporation of Amino Acids on Polyketide Scaffolds
合作研究:RUI:阐明聚酮化合物支架上非 NRPS 氨基酸掺入的设计规则
  • 批准号:
    2300890
  • 财政年份:
    2023
  • 资助金额:
    $ 32.89万
  • 项目类别:
    Continuing Grant
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
  • 批准号:
    10761044
  • 财政年份:
    2023
  • 资助金额:
    $ 32.89万
  • 项目类别:
Lifestyle, branched-chain amino acids, and cardiovascular risk factors: a randomized trial
生活方式、支链氨基酸和心血管危险因素:一项随机试验
  • 批准号:
    10728925
  • 财政年份:
    2023
  • 资助金额:
    $ 32.89万
  • 项目类别:
Single-molecule protein sequencing by barcoding of N-terminal amino acids
通过 N 端氨基酸条形码进行单分子蛋白质测序
  • 批准号:
    10757309
  • 财政年份:
    2023
  • 资助金额:
    $ 32.89万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了