FRET-based tension-sensors for studying zebrafish development

用于研究斑马鱼发育的基于 FRET 的张力传感器

基本信息

  • 批准号:
    8735365
  • 负责人:
  • 金额:
    $ 16.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-01 至 2016-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): FRET-based tension sensors to study zebrafish development forces and other mechanical variables play a significant role in animal development, as they shape tissue morphology, are part of signal transduction pathways, and drive cellular differentiation. Quantitative in-vivo tools for measuring forces and other biophysicl properties inside developing embryos are key for further understanding of these processes and their deregulation in disease, but these tools are largely lacking. We propose to develop genetically encoded, FRET-based tension sensors that harness a fluorescent signal to report force. Zebrafish is an ideal model organism for these studies due to the transparency and fast development of the embryo. We will build and screen multiple tension sensors based on native zebrafish genes, characterize the functionality of these sensors in the simpler and established cell-culture context, and test and fully characterize the most promising sensor constructs in the more challenging in-vivo context. Our preliminary data demonstrate that our imaging and data analysis modalities are sensitive enough for the proposed in-vivo measurements in zebrafish. We have already built multiple tension sensors based on native zebrafish mechanoproteins (ezrin, EpCAM) that properly localize in MDCK cells and in zebrafish. Further, we have established chemical and mechanical methods to characterize these sensors in-vitro and in- vivo. The main goal of this project is to translate the established in-vitro cell culture measurements into the in- vivo context of the zebrafish and to expand our repertoire of zebrafish-native force reporter constructs. The risk of this project is appropriate to the FOA and will be mitigated by screening a large number of probes. Our major intended deliverable is the construction and validation of one or more sensors that report in- vivo tension, with the successful demonstration of at least one force measurement at subcellular resolution within one developmentally relevant context. Depending on our progress, we hope to use our sensor(s) to significantly advance our understanding of how subcellular or inter-cellular tension drives a morphogenic process such as epiboly. Our team has all of the necessary expertise and an active collaboration that to date has generated a joint publication and the preliminary results tha predict the success of the proposed project. All resources and technologies are therefore at hand to revolutionize developmental biology research by developing robust, validated tools for measuring mechanical properties such as intercellular tension with subcellular resolution inside intact, living animals during development. We anticipate that empowering the developmental biology community to "see forces" inside living organisms will impact the field of mechano-biology much as "seeing gene expression" via GFP-tagging and "seeing neuronal activity" via Ca2+ imaging opened tremendous opportunities in developmental biology and neurobiology, respectively.
描述(由申请人提供):用于研究斑马鱼发育力和其他机械变量的基于FRET的张力传感器在动物发育中起着重要作用,因为它们塑造组织形态,是信号转导途径的一部分,并驱动细胞分化。用于测量发育中的胚胎内的力和其他生物学特性的定量体内工具是进一步理解这些过程及其在疾病中的失调的关键,但这些工具在很大程度上缺乏。 我们建议开发基因编码的基于FRET的张力传感器,利用荧光信号来报告力。斑马鱼是这些研究的理想模式生物,因为胚胎的透明性和快速发育。我们将建立和筛选基于原生斑马鱼基因的多个张力传感器,在更简单和建立的细胞培养环境中表征这些传感器的功能,并在更具挑战性的体内环境中测试和充分表征最有前途的传感器结构。 我们的初步数据表明,我们的成像和数据分析模式是足够敏感的建议在斑马鱼体内测量。我们已经建立了多个张力传感器的基础上,本地斑马鱼机械蛋白(ezrin,EpCAM),适当地定位在MDCK细胞和斑马鱼。此外,我们已经建立了化学和机械方法来表征这些传感器在体外和体内。该项目的主要目标是将建立的体外细胞培养测量转化为斑马鱼的体内环境,并扩展我们的斑马鱼-天然力报告基因构建体的库。本项目的风险适用于FOA,并将通过筛选大量探针来缓解。 我们的主要预期交付成果是构建和验证一个或多个报告体内张力的传感器,并成功证明在一个发育相关背景下以亚细胞分辨率进行至少一次力测量。根据我们的进展,我们希望使用我们的传感器来显着推进我们对亚细胞或细胞间张力如何驱动形态发生过程(如外延)的理解。我们的团队拥有所有必要的专业知识和积极的合作,迄今为止已经产生了一个联合出版物和初步结果,预测拟议项目的成功。因此,所有的资源和技术都可以通过开发强大的、经过验证的工具来彻底改变发育生物学研究,这些工具用于测量机械特性,例如在发育过程中完整的活动物体内具有亚细胞分辨率的细胞间张力。 我们预计,使发育生物学社区能够“看到生物体内部的力量”将影响机械生物学领域,就像通过GFP标记“看到基因表达”和通过Ca 2+成像“看到神经元活动”分别在发育生物学和神经生物学中开辟了巨大的机会一样。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander R Dunn其他文献

Bill Weis (1959-2023): Pioneering structural biologist and biochemist who revolutionized our understanding of cell adhesion and Wnt signaling.
Bill Weis (1959-2023):结构生物学家和生物化学家先驱,彻底改变了我们对细胞粘附和 Wnt 信号传导的理解。
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    7.8
  • 作者:
    M. Peifer;Alexander R Dunn
  • 通讯作者:
    Alexander R Dunn

Alexander R Dunn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander R Dunn', 18)}}的其他基金

Molecular mechanisms underlying force transduction at cellular adhesion complexes
细胞粘附复合物力传导的分子机制
  • 批准号:
    10221729
  • 财政年份:
    2019
  • 资助金额:
    $ 16.9万
  • 项目类别:
Molecular mechanisms underlying force transduction at cellular adhesion complexes
细胞粘附复合物力传导的分子机制
  • 批准号:
    9926286
  • 财政年份:
    2019
  • 资助金额:
    $ 16.9万
  • 项目类别:
Molecular mechanisms underlying force transduction at cellular adhesion complexes
细胞粘附复合物力传导的分子机制
  • 批准号:
    10437720
  • 财政年份:
    2019
  • 资助金额:
    $ 16.9万
  • 项目类别:
Molecular mechanisms underlying force transduction at cellular adhesion complexes
细胞粘附复合物力传导的分子机制
  • 批准号:
    10667312
  • 财政年份:
    2019
  • 资助金额:
    $ 16.9万
  • 项目类别:
Bio-AFM for combined light and atomic force imaging
用于组合光和原子力成像的生物原子力显微镜
  • 批准号:
    9074870
  • 财政年份:
    2016
  • 资助金额:
    $ 16.9万
  • 项目类别:
Molecular mechanisms underlying force sensing at intercellular junctions
细胞间连接处力传感的分子机制
  • 批准号:
    9281753
  • 财政年份:
    2016
  • 资助金额:
    $ 16.9万
  • 项目类别:
Molecular mechanisms underlying flow sensing in lymphatic endothelial cells
淋巴内皮细胞流量传感的分子机制
  • 批准号:
    8946731
  • 财政年份:
    2015
  • 资助金额:
    $ 16.9万
  • 项目类别:
Biophysical mechanisms of mechanical tension sensing at cellular integrin complexes
细胞整合素复合物机械张力传感的生物物理机制
  • 批准号:
    8800174
  • 财政年份:
    2015
  • 资助金额:
    $ 16.9万
  • 项目类别:
Biophysical mechanisms of mechanical tension sensing at cellular integrin complexes
细胞整合素复合物机械张力传感的生物物理机制
  • 批准号:
    9229049
  • 财政年份:
    2015
  • 资助金额:
    $ 16.9万
  • 项目类别:
Understanding force-dependent binding of alpha-catenin to actin
了解 α-连环蛋白与肌动蛋白的力依赖性结合
  • 批准号:
    8964322
  • 财政年份:
    2015
  • 资助金额:
    $ 16.9万
  • 项目类别:

相似海外基金

Learning from animals how to regenerate: multidisciplinary training programme in regenerative biology
向动物学习如何再生:再生生物学的多学科培训计划
  • 批准号:
    EP/X030350/1
  • 财政年份:
    2023
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Research Grant
BIORETS: Research Experiences for Teachers in the Biology of Plants, Animals, Microorganisms, and their Environments
BIORETS:植物、动物、微生物及其环境生物学教师的研究经验
  • 批准号:
    2146882
  • 财政年份:
    2022
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Standard Grant
NSF Postdoctoral Fellowship in Biology FY 2019: Using herbarium specimens and animal movement data to assess when animals will help plants track niches in a changing climate
2019 财年 NSF 生物学博士后奖学金:利用植物标本和动物运动数据来评估动物何时帮助植物追踪气候变化中的生态位
  • 批准号:
    1907348
  • 财政年份:
    2020
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Fellowship Award
Visual system and cognitive biology in normal animals versus in an animal model of Alzheimer's disease with or without diabetes treated with solo or dual inflammasome inhibitors
正常动物的视觉系统和认知生物学与单独或双重炎性体抑制剂治疗的患有或不患有糖尿病的阿尔茨海默病动物模型的比较
  • 批准号:
    10712956
  • 财政年份:
    2020
  • 资助金额:
    $ 16.9万
  • 项目类别:
NSF Postdoctoral Fellowship in Biology FY 2019: Transfer of Antimicrobial Resistance Genes between Humans, Animals, and the Environment in urban Bangladesh
2019 财年 NSF 生物学博士后奖学金:孟加拉国城市人类、动物和环境之间抗菌素耐药性基因的转移
  • 批准号:
    1906957
  • 财政年份:
    2019
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Fellowship Award
Meeting: The -omics of chemical interactions in simple extant animals ; Society for Integrative and Comparative Biology, Tampa, Florida, January 3-7, 2019
会议:简单现存动物化学相互作用的组学;
  • 批准号:
    1831860
  • 财政年份:
    2018
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Standard Grant
EAPSI: Determining the Biology and Ecology of One of Earth's Earliest animals: Dickinsonia
EAPSI:确定地球上最早的动物之一:狄更逊水母的生物学和生态学
  • 批准号:
    1414911
  • 财政年份:
    2014
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Fellowship Award
Microbial Ecology and Theory of Animals Center for Excellence in Systems Biology
微生物生态学和动物理论系统生物学卓越中心
  • 批准号:
    8368096
  • 财政年份:
    2012
  • 资助金额:
    $ 16.9万
  • 项目类别:
The biology of personality in wild animals
野生动物人格的生物学
  • 批准号:
    261454-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Discovery Grants Program - Individual
Microbial Ecology and Theory of Animals Center for Excellence in Systems Biology
微生物生态学和动物理论系统生物学卓越中心
  • 批准号:
    9130832
  • 财政年份:
    2012
  • 资助金额:
    $ 16.9万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了