Ultraviolet light sensing by cryptochrome
隐花色素紫外光传感
基本信息
- 批准号:8705550
- 负责人:
- 金额:$ 20.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-01 至 2017-05-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAction PotentialsAgricultureAloralAnimal ModelAnimalsAnopheles gambiaeArousalBehaviorBehavior ControlBehavioralBindingBiologicalBiological AssayBiteBrainButterfliesCenters for Disease Control and Prevention (U.S.)Chagas DiseaseCircadian RhythmsCouplingCryingCulicidaeDataDengueDetectionDevelopmentDevicesDiseaseDisease VectorsDrosophila genusDrosophila melanogasterEnvironmental ImpactEpidemicEyeFlavinsFlying body movementFrequenciesFutureGeneticHealthHumanInsect ControlInsect VectorsInsectaLaboratoriesLateralLeadLengthLightLongevityMalariaMeasuresMediatingMedicalMembraneMembrane PotentialsMolecularNeuronsOpsinOxidation-ReductionPerformancePhotoreceptorsPhototransductionPhysiologicalPhysiologyProbabilityProcessPropertyProteinsRelative (related person)ResearchSolidSourceSpectrum AnalysisTechnologyTestingTexasTimeTyphusUltraviolet RaysWest Nile virusYellow Feverbasechromophorecostcryptochromedesignflyhuman diseaseimprovedinnovationinsect diseaseinterestkillingsmillisecondmutantneural circuitnovelpesticide poisoningphotoactivationpublic health relevanceresearch studyresponsesensortwo-photonultravioletvectorvector mosquitovoltage
项目摘要
DESCRIPTION (provided by applicant): Ultraviolet (UV) light attracts most flying insects, including human disease vectors such as mosquitoes, flies, and biting gnats; and major agricultural pests. The diseases spread by harmful insects afflict hundreds of millions people worldwide and some insect-mediated diseases such as West Nile virus and dengue fever are alarmingly on the rise in the U.S (note the current epidemic of West Nile disease which is occurring throughout the U.S. and is most severe in Texas). Medical and agricultural damage caused by UV-sensitive insects costs many billions of dollars per year, which has led to the wide use of UV lights for insect control. The currently used versions of light traps are the descendants
of designs originating from the Centers for Disease Control in the 1960s. The design of insect control lights is based on the longstanding assumption that UV light detection and behavioral responses are mediated exclusively by UV-sensitive opsins in their eyes and external photoreceptors. Our laboratory has recently identified Cryptochrome (CRY) as another insect UV-sensitive photopigment as a major component for controlling fly behavioral responses to UV light. This exciting new finding followed directly from our recent discovery that blue light photoactivation of insect CRY causes rapid membrane depolarization and up to 300% increased action potential firing rate over baseline dark firing rate in central brain arousal neurons (Sheeb et al., 2007; Fogle et al., 2011). The CRY-mediated electrophysiological light response is robust in the absence of all opsin-based classical photoreceptor inputs (Fogle et al., 2011). Thus it is likely that insect control light technologies could be improved by a better understanding of the physiology of insect UV light response, including taking CRY's properties and physiologically driven processes into account. This proposal provides an innovative plan to explore UV light activation of insect CRYs including a rapid assay to assess the UV sensitivity of CRYs from all known sequences for the most harmful insect disease vectors, including the mosquito species responsible for malaria, dengue fever, yellow fever, West Nile virus and others. Other CRY sequences will become available in the near future for testing the insect vectors for Chagas disease and typhus. We had a solid plan to mechanistically determine the molecular and circuit physiology of how UV light activated CRY determines insect behavioral responses to UV light including aims that if successful will provide clear guidance for improving light devices to attrac and kill greater numbers of harmful insects. These plans include a test whether blue light pre-activation amplifies the biological response of CRY to UV light. Most of our plan centers around the use of LEDs as UV light sources. This was done in consideration for eventual field applications using LEDs for harmful insect control due to recent improvements in LED device longevity, precision of temporal control and power efficiency and low cost. The research plan is supported by very strong preliminary data for all aims and thus has a high probability for producing novel high impact findings.
描述(由申请人提供):紫外线(UV)光吸引大多数飞行昆虫,包括人类疾病媒介,如蚊子、苍蝇和叮咬的蚊蚋;以及主要的农业害虫。由有害昆虫传播的疾病困扰着全世界数亿人,一些昆虫介导的疾病,如西尼罗河病毒和登革热,在美国令人震惊地呈上升趋势(请注意,目前西尼罗河病的流行病正在美国各地发生,在德克萨斯州最为严重)。对紫外线敏感的昆虫造成的医疗和农业损失每年花费数十亿美元,这导致了紫外线灯在昆虫控制中的广泛使用。目前使用的版本的光陷阱是后代
源自20世纪60年代疾病控制中心的设计。昆虫控制灯的设计是基于长期的假设,即紫外线检测和行为反应完全由眼睛和外部光感受器中的紫外线敏感视蛋白介导。我们的实验室最近确定隐花色素(CRY)作为另一种昆虫紫外线敏感的色素作为控制苍蝇对紫外线的行为反应的主要成分。这一令人兴奋的新发现直接来自我们最近的发现,即昆虫CRY的蓝光光活化导致快速膜去极化和在中枢脑唤醒神经元中超过基线暗放电速率高达300%的动作电位放电速率增加(Sheeb等人,2007; Festival等人,2011年)。在不存在所有基于视蛋白的经典光感受器输入的情况下,光感受器介导的电生理学光响应是稳健的(Festival等人,2011年)。因此,通过更好地理解昆虫UV光响应的生理学,包括考虑CRY的特性和生理驱动过程,可以改进昆虫控制光技术。该提案提供了一项创新计划,以探索昆虫病原体的紫外光激活,包括快速测定,以评估来自所有已知序列的病原体对最有害昆虫疾病媒介的紫外线敏感性,包括导致疟疾、登革热、黄热病、西尼罗河病毒等的蚊子物种。在不久的将来,其他CRY序列将可用于测试查加斯病和斑疹伤寒的昆虫载体。我们有一个坚实的计划,从机制上确定紫外线激活CRY如何决定昆虫对紫外线的行为反应的分子和电路生理学,包括如果成功将为改进光设备提供明确的指导,以吸引和杀死更多的有害昆虫。这些计划包括测试蓝光预激活是否会放大CRY对紫外线的生物反应。我们的大部分计划都围绕着使用LED作为紫外线光源。这样做是考虑到由于LED器件寿命、时间控制精度和功率效率以及低成本的最新改进而使用LED进行有害昆虫控制的最终现场应用。该研究计划得到了所有目标的非常强有力的初步数据的支持,因此很有可能产生新的高影响力的研究结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Todd C Holmes其他文献
Todd C Holmes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Todd C Holmes', 18)}}的其他基金
UV to blue neuronal phototransduction mechanisms
紫外到蓝色神经元光转导机制
- 批准号:
10621560 - 财政年份:2018
- 资助金额:
$ 20.85万 - 项目类别:
UV to blue neuronal phototransduction mechanisms
紫外到蓝色神经元光转导机制
- 批准号:
10374057 - 财政年份:2018
- 资助金额:
$ 20.85万 - 项目类别:
UV to blue neuronal phototransduction mechanisms
紫外到蓝色神经元光转导机制
- 批准号:
10388927 - 财政年份:2018
- 资助金额:
$ 20.85万 - 项目类别:
UV to blue neuronal phototransduction mechanisms
紫外到蓝色神经元光转导机制
- 批准号:
9900018 - 财政年份:2018
- 资助金额:
$ 20.85万 - 项目类别:
Mechanism of cryptochrome-mediated photo transduction
隐花色素介导的光转导机制
- 批准号:
8502106 - 财政年份:2013
- 资助金额:
$ 20.85万 - 项目类别:
Mechanism of cryptochrome-mediated photo transduction
隐花色素介导的光转导机制
- 批准号:
8706189 - 财政年份:2013
- 资助金额:
$ 20.85万 - 项目类别:
Mechanism of cryptochrome-mediated photo transduction
隐花色素介导的光转导机制
- 批准号:
9090139 - 财政年份:2013
- 资助金额:
$ 20.85万 - 项目类别:
相似海外基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 20.85万 - 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
- 批准号:
422915148 - 财政年份:2019
- 资助金额:
$ 20.85万 - 项目类别:
Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
- 批准号:
1752274 - 财政年份:2018
- 资助金额:
$ 20.85万 - 项目类别:
Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
- 批准号:
18H03539 - 财政年份:2018
- 资助金额:
$ 20.85万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
- 批准号:
9588470 - 财政年份:2018
- 资助金额:
$ 20.85万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10009724 - 财政年份:2018
- 资助金额:
$ 20.85万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10467225 - 财政年份:2018
- 资助金额:
$ 20.85万 - 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
- 批准号:
9423398 - 财政年份:2017
- 资助金额:
$ 20.85万 - 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
- 批准号:
9357409 - 财政年份:2016
- 资助金额:
$ 20.85万 - 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
- 批准号:
16K07006 - 财政年份:2016
- 资助金额:
$ 20.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)