Models to predict prognosis and benefit from adjuvant therapy in renal cell carci

预测肾细胞癌预后和辅助治疗获益的模型

基本信息

  • 批准号:
    8444714
  • 负责人:
  • 金额:
    $ 33.32万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-03-04 至 2016-02-29
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Successful development of targeted anti-cancer drugs is often coupled with predictive assays that enable selective treatment of patients more likely to benefit from therapy. Immunohistochemistry is often used to assess expression of drug targets, but it suffers from subjectivity and lack of quantitative measures. We developed a method for automated, quantitative analysis (AQUA) for assessing protein levels in situ. In response to PA-08-134, we propose to expand AQUA to simultaneously assess tumors and endothelial cells, and develop models to predict clinical benefit from adjuvant sorafenib and sunitinib for renal cell carcinoma (RCC), as well as models to predict prognosis in untreated patients. RCC has traditionally been a disease that is highly resistant to systemic therapy. However, multiple targeted therapies, including sorafenib and sunitinib, have recently revolutionized the approach to metastatic RCC. Both drugs are effective for subsets of RCC patients, and both are associated with some toxicity. Given their success in metastatic RCC, these drugs are being studied as adjuvant therapies in a large, randomized, double blinded, multi-center trial called E2805. Specimens are being collected on all patients, and they offer a unique opportunity to develop models to predict clinical benefit from these drugs and models to predict prognosis in untreated patients in a multi-center clinical trial setting on a very large cohort. Sorafenib and sunitinb have multiple targets, and our purpose is to identify the most important predictive marker/s. We will study angiogenic markers, members of the MAPK pathway and other known targets. In preliminary studies using AQUA, we showed that RCCs with high levels of vascular endothelial growth factor (VEGF) receptors in tumor cells tend to have lower microvessel density and poor survival. We hypothesize that patients with high VEGF receptor expression in TUMOR cells are more likely to benefit from therapy than those with high microvessel density. We will expand AQUA to enable concurrent assessment of targets in tumor and vessels, by masking the tumor and vessels with different fluorophores. We will establish staining conditions for all known targets of sorafenib and sunitinib and select mediators of angiogenesis in tumor, endothelium and adjacent normal tissue using historical cohorts of untreated RCC patients. We will then assess VHL mutations and expression of sorafenib and sunitinib targets in a training set (67%) of E2805 patients and generate predictive models for each of the drugs, to be validated in a testing set. Standard clinical co-variates and VHL mutational status will be incorporated into the model. We will also use these molecular markers and clinical co-variates to improve current prognostic models in the placebo-treated patients. These models can be used to select patients for the optimal adjuvant therapy for RCC (sorafenib, sunitinib or neither), and this approach can be studied in other clinical settings as well.
描述(由申请人提供):靶向抗癌药物的成功开发通常与预测性测定相结合,从而能够对更有可能从治疗中获益的患者进行选择性治疗。免疫组织化学常用于评估药物靶点的表达,但其存在主观性和缺乏定量测量。我们开发了一种用于原位评估蛋白质水平的自动定量分析(AQUA)方法。作为对PA-08-134的回应,我们建议扩展AQUA以同时评估肿瘤和内皮细胞,并开发模型来预测辅助索拉非尼和舒尼替尼治疗肾细胞癌(RCC)的临床获益,以及预测未经治疗患者预后的模型。 传统上,RCC是一种对全身治疗具有高度抗性的疾病。然而,多种靶向治疗,包括索拉非尼和舒尼替尼,最近彻底改变了转移性RCC的方法。这两种药物对RCC患者的亚群都有效,并且都与一些毒性有关。鉴于它们在转移性RCC中的成功,这些药物正在一项名为E2805的大型、随机、双盲、多中心试验中作为辅助治疗进行研究。正在收集所有患者的样本,它们提供了一个独特的机会,可以开发模型来预测这些药物的临床获益,并在一个非常大的队列中进行多中心临床试验,预测未经治疗的患者的预后。索拉非尼和舒尼替尼有多个靶点,我们的目的是确定最重要的预测标志物。我们将研究血管生成标志物,MAPK通路的成员和其他已知的目标。在使用AQUA的初步研究中,我们发现肿瘤细胞中血管内皮生长因子(VEGF)受体水平高的RCC往往具有较低的微血管密度和较差的存活率。我们假设肿瘤细胞中VEGF受体高表达的患者比微血管密度高的患者更可能从治疗中获益。 我们将扩展AQUA,通过用不同的荧光团掩蔽肿瘤和血管,实现对肿瘤和血管中靶点的同时评估。我们将建立索拉非尼和舒尼替尼的所有已知靶点的染色条件,并使用未经治疗的RCC患者的历史队列来选择肿瘤、内皮和邻近正常组织中血管生成的介质。然后,我们将在E2805患者的训练集(67%)中评估VHL突变和索拉非尼和舒尼替尼靶点的表达,并为每种药物生成预测模型,并在测试集中进行验证。将标准临床协变量和VHL突变状态纳入模型。我们还将使用这些分子标志物和临床协变量来改善安慰剂治疗患者的当前预后模型。这些模型可用于选择RCC的最佳辅助治疗(索拉非尼,舒尼替尼或两者都不)的患者,并且这种方法也可以在其他临床环境中进行研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Harriet M. Kluger其他文献

Multiplex quantitative analysis of cancer-associated fibroblasts and immunotherapy outcome in metastatic melanoma
  • DOI:
    10.1186/s40425-019-0675-0
  • 发表时间:
    2019-07-23
  • 期刊:
  • 影响因子:
    10.600
  • 作者:
    Pok Fai Wong;Wei Wei;Swati Gupta;James W. Smithy;Daniel Zelterman;Harriet M. Kluger;David L. Rimm
  • 通讯作者:
    David L. Rimm
Evolving Immunotherapy Approaches for Renal Cell Carcinoma
  • DOI:
    10.1007/s11912-016-0542-9
  • 发表时间:
    2016-07-30
  • 期刊:
  • 影响因子:
    5.000
  • 作者:
    Susanna A. Curtis;Justine V. Cohen;Harriet M. Kluger
  • 通讯作者:
    Harriet M. Kluger
Activity of cabozantinib (XL184) in metastatic melanoma: Results from a phase II randomized discontinuation trial (RDT).
卡博替尼 (XL184) 在转移性黑色素瘤中的活性:II 期随机停药试验 (RDT) 的结果。
  • DOI:
    10.1200/jco.2012.30.15_suppl.8531
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    45.3
  • 作者:
    Michael S. Gordon;Harriet M. Kluger;G. Shapiro;R. Kurzrock;G. Edelman;Thomas A. Samuel;A. Moussa;D. Ramies;A. D. Laird;F. Schimmoller;Xiao;A. Daud
  • 通讯作者:
    A. Daud
Clonal determinants of organotropism and survival in metastatic uveal melanoma
转移性葡萄膜黑色素瘤器官趋向性和生存的克隆决定因素
  • DOI:
    10.1101/2024.05.14.593919
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bailey S.C.L. Jones;Patrick C. Demkowicz;Mitchelle Matesva;Renelle Pointdujour Lim;John H. Sinard;Antonietta Bacchiocchi;Ruth Halaban;M. Bosenberg;Mario Sznol;Harriet M. Kluger;Mathieu F. Bakhoum
  • 通讯作者:
    Mathieu F. Bakhoum
Correction to: Incidence and characteristics of metastatic intracranial lesions in stage III and IV melanoma: a single institute retrospective analysis
  • DOI:
    10.1007/s11060-021-03825-4
  • 发表时间:
    2021-08-17
  • 期刊:
  • 影响因子:
    3.100
  • 作者:
    Mani Ratnesh S. Sandhu;Veronica L. Chiang;Thuy Tran;James B. Yu;Sarah A. Weiss;Sarah B. Goldberg;Mariam S. Aboian;Harriet M. Kluger;Amit Mahajan
  • 通讯作者:
    Amit Mahajan

Harriet M. Kluger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Harriet M. Kluger', 18)}}的其他基金

Dual-isotope SPECT imaging and immunophenotyping of immune cells to determine response to immunotherapy
双同位素 SPECT 成像和免疫细胞免疫表型分析以确定对免疫治疗的反应
  • 批准号:
    10590408
  • 财政年份:
    2023
  • 资助金额:
    $ 33.32万
  • 项目类别:
The Yale Cancer Center Calabresi Immuno-Oncology Training Program (IOTP)
耶鲁大学癌症中心卡拉布雷西免疫肿瘤学培训计划 (IOTP)
  • 批准号:
    9899739
  • 财政年份:
    2018
  • 资助金额:
    $ 33.32万
  • 项目类别:
YALE CANCER CENTER CALABRESI IMMUNO-ONCOLOGY TRAINING PROGRAM
耶鲁大学癌症中心卡拉布雷西免疫肿瘤学培训计划
  • 批准号:
    10646793
  • 财政年份:
    2018
  • 资助金额:
    $ 33.32万
  • 项目类别:
Yale SPORE in Lung Cancer Career Enhancement Program
耶鲁 SPORE 肺癌职业提升计划
  • 批准号:
    10203858
  • 财政年份:
    2015
  • 资助金额:
    $ 33.32万
  • 项目类别:
A research and training program for junior clinicians in treating metastatic mela
初级临床医生治疗转移性黄斑变性的研究和培训计划
  • 批准号:
    8581535
  • 财政年份:
    2013
  • 资助金额:
    $ 33.32万
  • 项目类别:
A research and training program for junior clinicians in treating metastatic mela
初级临床医生治疗转移性黄斑变性的研究和培训计划
  • 批准号:
    8692684
  • 财政年份:
    2013
  • 资助金额:
    $ 33.32万
  • 项目类别:
A research and training program for junior clinicians in treating metastatic mela
初级临床医生治疗转移性黄斑变性的研究和培训计划
  • 批准号:
    9279067
  • 财政年份:
    2013
  • 资助金额:
    $ 33.32万
  • 项目类别:
Models to Predict Prognosis and Benefit from Adjuvant Therapy in Renal Cell Carci
预测肾细胞癌预后和辅助治疗获益的模型
  • 批准号:
    8613470
  • 财政年份:
    2011
  • 资助金额:
    $ 33.32万
  • 项目类别:
Models to predict prognosis and benefit from adjuvant therapy in renal cell carci
预测肾细胞癌预后和辅助治疗获益的模型
  • 批准号:
    8085276
  • 财政年份:
    2011
  • 资助金额:
    $ 33.32万
  • 项目类别:
Models to predict prognosis and benefit from adjuvant therapy in renal cell carci
预测肾细胞癌预后和辅助治疗获益的模型
  • 批准号:
    8236884
  • 财政年份:
    2011
  • 资助金额:
    $ 33.32万
  • 项目类别:

相似海外基金

Countering sympathetic vasoconstriction during skeletal muscle exercise as an adjuvant therapy for DMD
骨骼肌运动期间对抗交感血管收缩作为 DMD 的辅助治疗
  • 批准号:
    10735090
  • 财政年份:
    2023
  • 资助金额:
    $ 33.32万
  • 项目类别:
The ESCAPE clinical trial of circulating tumor DNA to guide adjuvant therapy in chemo-resistant triple negative breast cancer
循环肿瘤 DNA 指导化疗耐药三阴性乳腺癌辅助治疗的 ESCAPE 临床试验
  • 批准号:
    494901
  • 财政年份:
    2023
  • 资助金额:
    $ 33.32万
  • 项目类别:
    Operating Grants
A Type I Hybrid Effectiveness-Implementation Trial to Evaluate a Navigation-Based Multilevel Intervention to Decrease Delays Starting Adjuvant Therapy Among Patients with Head and Neck Cancer
一项 I 型混合有效性实施试验,用于评估基于导航的多级干预措施,以减少头颈癌患者开始辅助治疗的延迟
  • 批准号:
    10714537
  • 财政年份:
    2023
  • 资助金额:
    $ 33.32万
  • 项目类别:
Multi-modal machine learning to guide adjuvant therapy in surgically resectable colorectal cancer
多模式机器学习指导可手术切除结直肠癌的辅助治疗
  • 批准号:
    10588103
  • 财政年份:
    2023
  • 资助金额:
    $ 33.32万
  • 项目类别:
Efficacy of ethanol adjuvant therapy after resection of malignant soft tissue tumors
恶性软组织肿瘤切除术后乙醇辅助治疗的疗效
  • 批准号:
    22K09407
  • 财政年份:
    2022
  • 资助金额:
    $ 33.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Identification of immune response cells and development of novel adjuvant therapy for sublingual immunotherapy
免疫应答细胞的鉴定和舌下免疫治疗新型辅助疗法的开发
  • 批准号:
    21KK0287
  • 财政年份:
    2022
  • 资助金额:
    $ 33.32万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Pursuing molecular biomarkers to guide adjuvant therapy for HPV+ head and neck cancers after transoral robotic surgery
寻找分子生物标志物来指导经口机器人手术后 HPV 头颈癌的辅助治疗
  • 批准号:
    10357120
  • 财政年份:
    2022
  • 资助金额:
    $ 33.32万
  • 项目类别:
Biomarker research using two prospective studies on preoperative and postoperative adjuvant therapy for pancreatic cancer
使用两项关于胰腺癌术前和术后辅助治疗的前瞻性研究进行生物标志物研究
  • 批准号:
    21K08700
  • 财政年份:
    2021
  • 资助金额:
    $ 33.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Personalized Resistant Starch as an Adjuvant Therapy for Pediatric Inflammatory Bowel Disease
个性化抗性淀粉作为小儿炎症性肠病的辅助治疗
  • 批准号:
    437315
  • 财政年份:
    2020
  • 资助金额:
    $ 33.32万
  • 项目类别:
    Studentship Programs
Tailored adjuvant therapy in POLE-mutated and p53-wildtype early stage endometrial cancer (TAPER)
POLE 突变和 p53 野生型早期子宫内膜癌 (TAPER) 的定制辅助治疗
  • 批准号:
    435603
  • 财政年份:
    2020
  • 资助金额:
    $ 33.32万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了