Multi-modal machine learning to guide adjuvant therapy in surgically resectable colorectal cancer
多模式机器学习指导可手术切除结直肠癌的辅助治疗
基本信息
- 批准号:10588103
- 负责人:
- 金额:$ 62.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-02 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdjuvant ChemotherapyAdjuvant TherapyArchitectureAreaBiological MarkersCancer EtiologyCatalogsCessation of lifeClinicalClinical DataClinical MedicineCollaborationsColorectal CancerCompanionsComputerized Medical RecordDataData SetDepositionDevelopmentDiagnosisDiagnosticDiseaseDisease-Free SurvivalEnsureEvaluationExcisionFutureHealth Care CostsHumanImageInstitutionLaboratoriesMachine LearningMagnetic Resonance ImagingMalignant NeoplasmsMethodsModalityModelingMorbidity - disease rateOncologistOncologyOperative Surgical ProceduresOutcomePathologicPathologistPathologyPatient TriagePatientsPerformancePharmaceutical PreparationsPhysiciansPrecision therapeuticsRadiology SpecialtyRecordsRecurrenceResearchResearch PersonnelResectableResourcesRiskSecureStratificationStructureTestingTimeTrainingTreatment-related toxicityValidationX-Ray Computed Tomographyanticancer researchbiomedical data sciencecancer biomarkerscancer surgerycancer typechemotherapycohortcolon cancer patientscomputer sciencecostcost efficientdata de-identificationdata fusiondata modelingdata sharingdeep learningdeep learning modelelectronic structureempowermentfollow-uphigh riskimaging studyimprovedmachine learning modelmortalitymultimodal datamultimodalitynovelonline repositoryovertreatmentpathology imagingprecision medicineprimary outcomeprognosticprognostic assaysprognosticationradiological imagingradiologistrisk stratificationstandard of carestatisticstooltreatment planningtumorunnecessary treatmentwhole slide imaging
项目摘要
Project Summary / Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed malignancy and the second leading cause of
cancer death worldwide. There is an unmet need for accurate, cost-efficient, and broadly accessible risk-
stratification tools to identify patients at increased risk of recurrence , who are most likely to benefit from
adjuvant therapy. Current standard-of-care risk stratification approaches are inadequate. Every CRC surgical
candidate undergoes pathologic and radiologic evaluation of their tumor; these two modalities represent a rich,
readily accessible and, thus far, underutilized resource for developing new risk-stratification tools. Deep
learning (DL) has demonstrated great potential for augmenting physicians on an increasing range of diagnostic
and prognostic tasks in pathology, radiology, and clinical medicine. We hypothesize that applying integrated
DL-based analysis to multimodal (pathologic, radiologic, and electronic medical record (EMR)) data will yield
greatly improved stratification of CRC patients for adjuvant treatment planning. We propose to build the first
comprehensive, publicly-available, expert-annotated multimodal CRC dataset for deep learning, containing
annotated CRC pathology whole-slide images (WSI), preoperative CT and MRI images, and structured clinical
EMR data. Using this dataset, we will develop both single and multi-modality DL models for risk stratification of
surgically-resectable (Stage I-III) CRC patients.To test our hypothesis, we will compare the performance of
multi-modality models with that of single-modality models and existing methods of stratification. This project
benefits from the complementary expertise and resources of a unique interdisciplinary team spanning the fields
of machine learning, pathology, radiology, and oncology.
项目总结/摘要
结直肠癌(CRC)是第三大最常诊断的恶性肿瘤,也是第二大导致结直肠癌的原因。
全球癌症死亡人数对准确、经济高效和广泛可及的风险的需求尚未得到满足-
分层工具,用于识别复发风险增加的患者,这些患者最有可能受益于
辅助治疗目前的标准治疗风险分层方法是不够的。每次CRC手术
候选人经历他们的肿瘤的病理学和放射学评估;这两种模式代表了丰富的,
开发新的风险分层工具所需的现成资源,迄今尚未得到充分利用。深
学习(DL)已被证明具有极大的潜力,可以增强医生对越来越多的诊断范围的认识。
以及病理学、放射学和临床医学中的预后任务。我们假设,
对多模态(病理学、放射学和电子病历(EMR))数据进行基于DL的分析,
大大改善了CRC患者的分层,以制定辅助治疗计划。我们建议建立第一个
用于深度学习的全面、公开、专家注释的多模式CRC数据集,包含
注释的CRC病理学全切片图像(WSI)、术前CT和MRI图像,以及结构化的临床
电子病历数据。使用该数据集,我们将开发单模态和多模态DL模型用于以下疾病的风险分层:
可手术切除(I-III期)的CRC患者。为了验证我们的假设,我们将比较以下患者的表现
多模态模型与单模态模型和现有分层方法的对比。这个项目
受益于跨领域的独特跨学科团队的互补专业知识和资源
of machine机器learning学习,pathology病理学,radiology放射学,and oncology肿瘤学.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeanne Shen其他文献
Jeanne Shen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
3D Engineered Model of Microscopic Colorectal Cancer Liver Metastasis for Adjuvant Chemotherapy Screens
用于辅助化疗筛选的显微结直肠癌肝转移 3D 工程模型
- 批准号:
10556192 - 财政年份:2023
- 资助金额:
$ 62.96万 - 项目类别:
Developing Digital Pathology Biomarkers for Response to Neoadjuvant and Adjuvant Chemotherapy in Breast Cancer
开发数字病理学生物标志物以应对乳腺癌新辅助和辅助化疗
- 批准号:
10315227 - 财政年份:2021
- 资助金额:
$ 62.96万 - 项目类别:
Circulating Tumour DNA Analysis Informing Adjuvant Chemotherapy in Stage III Colorectal Cancer: A Multicentre Phase II/III Randomised Controlled Trial (DYNAMIC-III)
循环肿瘤 DNA 分析为 III 期结直肠癌辅助化疗提供信息:多中心 II/III 期随机对照试验 (DYNAMIC-III)
- 批准号:
443988 - 财政年份:2021
- 资助金额:
$ 62.96万 - 项目类别:
Operating Grants
Establishment of new selection system for adjuvant chemotherapy of colorectal cancer
结直肠癌辅助化疗新选择体系的建立
- 批准号:
20K09011 - 财政年份:2020
- 资助金额:
$ 62.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improved survival by Helicobacter pylori-modulated immunity in gastric cancer patients with adjuvant chemotherapy
幽门螺杆菌调节免疫力可改善接受辅助化疗的胃癌患者的生存率
- 批准号:
19K09130 - 财政年份:2019
- 资助金额:
$ 62.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A new strategy of adjuvant chemotherapy for lung cancer based on the expression of anti-aging gene Klotho
基于抗衰老基因Klotho表达的肺癌辅助化疗新策略
- 批准号:
19K18225 - 财政年份:2019
- 资助金额:
$ 62.96万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Novel candidate factors predicting the effect of S-1 adjuvant chemotherapy of pancreatic cancer
预测胰腺癌S-1辅助化疗效果的新候选因素
- 批准号:
18K16337 - 财政年份:2018
- 资助金额:
$ 62.96万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Project 2-Metabolic Modulation of Myeloid-Derived Suppressor Cells to Increase Efficacy of Neo adjuvant Chemotherapy and Immunotherapy
项目2-骨髓源性抑制细胞的代谢调节以提高新辅助化疗和免疫疗法的疗效
- 批准号:
10005254 - 财政年份:2018
- 资助金额:
$ 62.96万 - 项目类别:
Radiogenomic tools for prediction of breast cancer neo-adjuvant chemotherapy response from pre-treatment MRI
通过治疗前 MRI 预测乳腺癌新辅助化疗反应的放射基因组学工具
- 批准号:
9763320 - 财政年份:2018
- 资助金额:
$ 62.96万 - 项目类别:
Analysis of the molecular mechanism for the prognostic biomarker of adjuvant chemotherapy
辅助化疗预后生物标志物的分子机制分析
- 批准号:
18K07341 - 财政年份:2018
- 资助金额:
$ 62.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)