Metabolic reprogramming in pluripotent induction and cardiac lineage specificatio
多能诱导和心脏谱系特异性中的代谢重编程
基本信息
- 批准号:8791201
- 负责人:
- 金额:$ 13.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:Acetyl Coenzyme AAcidsAddressAdvisory CommitteesAgingAnabolismAreaAwardBackBiochemical PathwayBiochemistryBioenergeticsBiogenesisBiological ModelsBiologyCardiacCardiac MyocytesCardiovascular systemCatabolismCell Fate ControlCell RespirationCell physiologyCellsCellular StructuresChronic DiseaseCitric Acid CycleClinicComplementComplexDataDerivation procedureDevelopmentDiseaseEducationEducational CurriculumElectron TransportEmbryoEnergy MetabolismEnvironmentEnzymesEpigenetic ProcessEquilibriumEventFibroblastsFosteringFoundationsFunctional disorderFundingGenerationsGeneticGlycolysisGoalsHealth ProfessionalHeartHomeostasisKnowledgeLungMaintenanceManuscriptsMedicineMembrane PotentialsMentorsMetabolicMetabolic PathwayMetabolismMethodologyMissionMitochondriaModelingMolecularMolecular BiologyNatural regenerationOxidative PhosphorylationPathway interactionsPhasePopulationProcessProtocols documentationPublicationsRegenerative MedicineRejuvenationReportingResearchResearch InfrastructureResourcesScienceSignal TransductionSomatic CellSpecific qualifier valueStagingStem cellsSymptomsSystems BiologyTechniquesTestingTissuesTrainingTranslationsWorkbasecardiogenesiscareercareer developmentdisorder preventionexperiencehigh throughput technologyimprovedinduced pluripotent stem cellinnovationinsightinstrumentknowledge basemacromoleculemetabolomicsmitochondrial membranenew technologynext generationnovelnovel strategiesnuclear reprogrammingpandemic diseasepluripotencypost-doctoral trainingpreventprofessorprogramsregenerativeregenerative therapyself-renewalskillsstem cell biologystem cell fatestoichiometry
项目摘要
DESCRIPTION (provided by applicant): Defining the regulators of stem cell fate is critical in deriving lineage-specified populations for tailored regenerative therapy. Beyond established genetic/epigenetic control of cell identity, emerging evidence indicates that the way stem cells use energy and metabolites determine their fate. To maintain tissue regenerative capacity, stem cells must transit between distinct states from active proliferation/self-renewal to differentiatio, each imposing unique bioenergetic demands. To enable transition between distinct states, metabolic plasticity prioritizes biochemical pathways to establish a balance between catabolism, the process of breaking down substrates to produce energy, and anabolism, the process of constructing macromolecules. The overall goal of this proposed research is to understand how plasticity in energy metabolism regulates cell fate decisions and how specific metabolic pathways support stage-specific stem cell function. The K99 phase of this award will focus on defining the specific mitochondrial dependent components and metabolic pathways essential for nuclear reprogramming of somatic cells back to the pluripotent state. This will be accomplished by comparing bona fide induced pluripotent stem cells versus their parental fibroblasts using fundamental mitochondrial biology techniques and high throughput metabolomics/metabolic flux analysis, and validating the impact of identified pathways on nuclear reprogramming using mitochondrial deficient cells and enzyme- specific inhibition. Having developed this expertise in mitochondrial biology and high throughput metabolomics and metabolic flux analysis, the R00 phase of the award will focus on applying these new technologies to a cardiac differentiation protocol that allows isolation of developmental stages during cardiogenesis in order to define the specific mitochondrial complexes and metabolic reprogramming that fuels lineage specification, using cardiac differentiation as a model system. Collectively the K99 and R00, by defining the distinct components of mitochondrial function necessary for initiation of metabolic reprogramming during induction of pluripotency and lineage specification, will fundamentally advance our current knowledge of stem cell metabolism and how it impacts cell fate. Application of this knowledge will enable development of metabolic strategies for generation of tissue-specific cell populations for regenerative therapy, with potential translation to identify new targets based upon energy metabolism to prevent degeneration or elicit rejuvenation in chronic disease. The synergy of the candidate's research experience and outstanding current environment has laid the foundation for the present application in the field of stem cell metabolism and cell fate decisions. His graduate work built upon initial undergraduate training in biochemistry that provided a comprehensive knowledge base in energy metabolism and cardiovascular pathophysiology, which was enhanced with training in stem cell biology and metabolomics profiling during the initial post-doctoral training. The K99 phase of this award will be based at Mayo Clinic, where the core mission focuses on research and education aimed to advance the science of medicine, improve disease prevention and treatment, and prepare next generations of health care professionals. The scientific proposal will benefit from Mayo Clinic's cutting edge technical platforms and core resources, while career development will be facilitated by tailored curriculum established by the mentor, leveraging the career development instruments of Mayo Clinic. The candidate's short-term goals include publication of current and proposed manuscripts on the mitochondrial/metabolic determinants of nuclear reprogramming (K99 phase), establishment of model systems required for the proposed projects and acquisition of comprehensive skill sets to dissect mitochondrial and metabolic function in the setting of decoding stem cell fate decisions. Completion of these goals will facilitate the candidate's long-term career goal of establishing an independent and extramurally funded research program to examine how plasticity in energy metabolism regulates cell fate decisions and how specific metabolic pathways support stage-specific stem cell function (R00 phase). Career development will be fostered through interaction with the mentor, Dr. A. Terzic (Director, Mayo Clinic Center for Regenerative Medicine) and the advisory committee composed of Drs. J. Burnett Jr. (Former Director, Mayo Clinic Heart and Lung Research Center), S. Nair (Director, Mayo Clinic Comprehensive Metabolomics Center), F. Prendergast (Guggenheim Professor of Biochemistry and Molecular Biology), and J. van Deursen (Chair, Department of Biochemistry and Molecular Biology). Emphasis will be placed on acquisition of new skills and methodology, specifically in the areas of mitochondrial biology, metabolomics, metabolic flux analysis and systems biology to complement the current expertise in stem cell biology and NMR based metabolomics. This technical proficiency paired with the conceptual innovation outlined in the scientific proposal provides a launchpad to embark on an independent research career in the emerging domain of stem cell metabolism.
描述(由申请人提供):定义干细胞命运的调节因子对于获得用于定制再生治疗的谱系特异性群体至关重要。除了已建立的细胞身份的遗传/表观遗传控制,新出现的证据表明,干细胞使用能量和代谢物的方式决定了它们的命运。为了维持组织再生能力,干细胞必须在从活跃增殖/自我更新到分化的不同状态之间转换,每种状态都施加独特的生物能量需求。为了实现不同状态之间的转换,代谢可塑性优先考虑生物化学途径,以在分解底物以产生能量的过程和构建大分子的过程之间建立平衡。这项拟议研究的总体目标是了解能量代谢的可塑性如何调节细胞命运决定,以及特定的代谢途径如何支持特定阶段的干细胞功能。该奖项的K99阶段将专注于定义体细胞核重编程回到多能状态所必需的特定线粒体依赖成分和代谢途径。这将通过使用基本线粒体生物学技术和高通量代谢组学/代谢通量分析比较真正的诱导多能干细胞与其亲本成纤维细胞,并使用线粒体缺陷细胞和酶特异性抑制验证鉴定的途径对核重编程的影响来实现。在开发了线粒体生物学和高通量代谢组学和代谢通量分析方面的专业知识之后,该奖项的R 00阶段将专注于将这些新技术应用于心脏分化方案,该方案允许在心脏发生期间分离发育阶段,以定义特定的线粒体复合物和代谢重编程,从而使用心脏分化作为模型系统来促进谱系规范。总的来说,K99和R 00通过定义在诱导多能性和谱系特化期间启动代谢重编程所必需的线粒体功能的不同组分,将从根本上推进我们目前对干细胞代谢及其如何影响细胞命运的认识。这些知识的应用将能够开发用于再生治疗的组织特异性细胞群的生成的代谢策略,具有潜在的翻译以基于能量代谢来识别新靶点,以防止慢性疾病中的退化或引起复壮。候选人的研究经验和出色的当前环境的协同作用奠定了干细胞代谢和细胞命运决定领域的当前应用的基础。他的研究生工作建立在生物化学的初始本科培训基础上,提供了能量代谢和心血管病理生理学的全面知识基础,并在初始博士后培训期间通过干细胞生物学和代谢组学分析的培训得到增强。该奖项的K99阶段将以马约诊所为基地,其核心使命集中于旨在推进医学科学,改善疾病预防和治疗,并为下一代医疗保健专业人员做好准备的研究和教育。科学建议将受益于马约诊所的尖端技术平台和核心资源,而职业发展将通过导师制定的定制课程来促进,利用马约诊所的职业发展工具。候选人的短期目标包括发表关于核重编程(K99阶段)的线粒体/代谢决定因素的当前和拟议手稿,建立拟议项目所需的模型系统,并获得全面的技能,以在解码干细胞命运决定的背景下解剖线粒体和代谢功能。这些目标的完成将促进候选人的长期职业目标,即建立一个独立的、由校外资助的研究项目,以研究能量代谢的可塑性如何调节细胞命运的决定,以及特定的代谢途径如何支持特定阶段的干细胞功能(R 00阶段)。职业发展将通过与导师A博士的互动来促进。Terzic(马约诊所再生医学中心主任)和由J. Burnett Jr.博士组成的咨询委员会。(前主任,马约诊所心肺研究中心),S。Nair(马约诊所综合代谢组学中心主任),F. Prendergast(古根海姆生物化学和分子生物学教授)和J.货车Deursen(生物化学和分子生物学系主任)。重点将放在获取新的技能和方法,特别是在线粒体生物学,代谢组学,代谢通量分析和系统生物学领域,以补充目前在干细胞生物学和基于NMR的代谢组学的专业知识。这种技术熟练程度与科学提案中概述的概念创新相结合,为在新兴的干细胞代谢领域开展独立的研究事业提供了一个发射台。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Clifford D Folmes其他文献
Erratum to: Loss of HSulf-1 promotes altered lipid metabolism in ovarian cancer
- DOI:
10.1186/2049-3002-2-24 - 发表时间:
2014-11-04 - 期刊:
- 影响因子:5.300
- 作者:
Debarshi Roy;Susmita Mondal;Chen Wang;Xiaoping He;Ashwani Khurana;Shailendra Giri;Robert Hoffmann;Deok-Beom Jung;Sung H Kim;Eduardo N Chini;Juliana Camacho Periera;Clifford D Folmes;Andrea Mariani;Sean C Dowdy;Jamie N Bakkum-Gamez;Shaun M Riska;Ann L Oberg;Edward D Karoly;Lauren N Bell;Jeremy Chien;Viji Shridhar - 通讯作者:
Viji Shridhar
Clifford D Folmes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Clifford D Folmes', 18)}}的其他基金
Metabolic reprogramming in pluripotent induction and cardiac lineage specificatio
多能诱导和心脏谱系特异性中的代谢重编程
- 批准号:
9416185 - 财政年份:2017
- 资助金额:
$ 13.94万 - 项目类别:
Metabolic reprogramming in pluripotent induction and cardiac lineage specificatio
多能诱导和心脏谱系特异性中的代谢重编程
- 批准号:
8896042 - 财政年份:2014
- 资助金额:
$ 13.94万 - 项目类别:
相似国自然基金
具有抗癌活性的天然产物金霉酸(Aureolic acids)全合成与选择性构建2-脱氧糖苷键
- 批准号:22007039
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
海洋放线菌来源聚酮类化合物Pteridic acids生物合成机制研究
- 批准号:
- 批准年份:2019
- 资助金额:10.0 万元
- 项目类别:省市级项目
手性Lewis Acids催化的分子内串联1,5-氢迁移/环合反应及其在构建结构多样性手性含氮杂环化合物中的应用
- 批准号:21372217
- 批准年份:2013
- 资助金额:80.0 万元
- 项目类别:面上项目
对空气稳定的新型的有机金属Lewis Acids催化剂制备、表征与应用研究
- 批准号:21172061
- 批准年份:2011
- 资助金额:30.0 万元
- 项目类别:面上项目
钛及含钛Lewis acids促臭氧/过氧化氢体系氧化性能的广普性、高效性及其机制
- 批准号:21176225
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
基于Zip Nucleic Acids引物对高度降解和低拷贝DNA检材的STR分型研究
- 批准号:81072511
- 批准年份:2010
- 资助金额:31.0 万元
- 项目类别:面上项目
海洋天然产物Makaluvic acids 的全合成及其对南海鱼虱存活的影响
- 批准号:30660215
- 批准年份:2006
- 资助金额:21.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Lipid nanoparticle-mediated Inhalation delivery of anti-viral nucleic acids
脂质纳米颗粒介导的抗病毒核酸的吸入递送
- 批准号:
502577 - 财政年份:2024
- 资助金额:
$ 13.94万 - 项目类别:
CAREER: Highly Rapid and Sensitive Nanomechanoelectrical Detection of Nucleic Acids
职业:高度快速、灵敏的核酸纳米机电检测
- 批准号:
2338857 - 财政年份:2024
- 资助金额:
$ 13.94万 - 项目类别:
Continuing Grant
Double Incorporation of Non-Canonical Amino Acids in an Animal and its Application for Precise and Independent Optical Control of Two Target Genes
动物体内非规范氨基酸的双重掺入及其在两个靶基因精确独立光学控制中的应用
- 批准号:
BB/Y006380/1 - 财政年份:2024
- 资助金额:
$ 13.94万 - 项目类别:
Research Grant
Quantifying L-amino acids in Ryugu to constrain the source of L-amino acids in life on Earth
量化 Ryugu 中的 L-氨基酸以限制地球生命中 L-氨基酸的来源
- 批准号:
24K17112 - 财政年份:2024
- 资助金额:
$ 13.94万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Synthetic analogues based on metabolites of omega-3 fatty acids protect mitochondria in aging hearts
基于 omega-3 脂肪酸代谢物的合成类似物可保护衰老心脏中的线粒体
- 批准号:
477891 - 财政年份:2023
- 资助金额:
$ 13.94万 - 项目类别:
Operating Grants
Metabolomic profiles of responders and non-responders to an omega-3 fatty acids supplementation.
对 omega-3 脂肪酸补充剂有反应和无反应者的代谢组学特征。
- 批准号:
495594 - 财政年份:2023
- 资助金额:
$ 13.94万 - 项目类别:
Molecular recognition and enantioselective reaction of amino acids
氨基酸的分子识别和对映选择性反应
- 批准号:
23K04668 - 财政年份:2023
- 资助金额:
$ 13.94万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integrated understanding and manipulation of hypoxic cellular functions by artificial nucleic acids with hypoxia-accumulating properties
具有缺氧累积特性的人工核酸对缺氧细胞功能的综合理解和操纵
- 批准号:
23H02086 - 财政年份:2023
- 资助金额:
$ 13.94万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Basic research toward therapeutic strategies for stress-induced chronic pain with non-natural amino acids
非天然氨基酸治疗应激性慢性疼痛策略的基础研究
- 批准号:
23K06918 - 财政年份:2023
- 资助金额:
$ 13.94万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms how arrestins that modulate localization of glucose transporters are phosphorylated in response to amino acids
调节葡萄糖转运蛋白定位的抑制蛋白如何响应氨基酸而被磷酸化的分子机制
- 批准号:
23K05758 - 财政年份:2023
- 资助金额:
$ 13.94万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




