Porous Silicon Particles for Sustained Intravitreal Drug Delivery
用于持续玻璃体内药物输送的多孔硅颗粒
基本信息
- 批准号:8723216
- 负责人:
- 金额:$ 51.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdsorptionAge related macular degenerationAnimal ModelAnimalsAvastinBiological AssayBlood-Retinal BarrierCell Culture TechniquesCellular AssayChemistryChronicCicatrixClinicalDataDaunorubicinDevelopmentDevicesDexamethasoneDimensionsDiseaseDisease modelDrug ControlsDrug Delivery SystemsDrug KineticsDrug MonitoringDrug usageElectrostaticsEngineeringEnzyme-Linked Immunosorbent AssayEvaluationExcisionEyeEye diseasesGoalsHalf-LifeHourImplantIn VitroInflammationInjection of therapeutic agentLasersMacular degenerationMethodsModalityModelingModificationMonitorNanostructuresOperative Surgical ProceduresOpticsPatientsPharmaceutical PreparationsPlantsPorosityPreventionProcessProliferative VitreoretinopathyPropertyProteinsPupilQuality of lifeRefractoryReportingRetinalSafetyScanningSeriesSiliconSurfaceSystemTestingTherapeuticTissuesToxic effectTraumaUveitisbasebevacizumabdiabeticdigitaldigital imagingdrug candidateimprovedin vivointravitreal injectionminimally invasivenanostructurednon-invasive monitornoveloxidationparticleresearch studysmall moleculetreatment strategy
项目摘要
DESCRIPTION (provided by applicant): There is an important unmet need for a minimally invasive long acting, and monitorable drug delivery system for the treatment of posterior eye diseases. Due to the difficulty of crossing the blood-retinal barrier, intravitreal drug delivery has become the mainstay to treat posterior eye diseases. The current available medications require frequent intravitreal injection or invasive surgical intraocular implant. This application seeks to develop and evaluate a porous silicon (Psi) based intravitreal drug delivery system. Three candidate drugs: bevacizumab, daunorubicin, and dexamethasone, will be used as model drugs to investigate this novel and unique system. Bevacizumab represents large molecule such as protein; daunorubicin and dexamethasone represent small molecules which target two major components of chorioretinal diseases: unwanted proliferation and inflammation. We hypothesize that Psi particles are non-toxic and biodegradable after intravitreal injection, that their porosity can be used for hosting therapeutics, and that their optical property can be harnessed to report drug release from remote. Our preliminary data have shown that by modifying the surface chemistry of Psi via oxidation or hydrosilylation, the Psi particle's ability to remain in the vitreous can be extended from 1 week to 16 weeks without ocular toxicity. Our in vitro data demonstrated that the loading and removal of daunorubicin changed the spectrum of Psi particles which served as a barcode for drug monitoring and could be captured by a digital camera, allowing for non-invasive monitoring of drug release in the clinical setting. We also showed that covalent attachment of daunorubicin to either hydrosilylated or oxidized Psi particles extended the drug half-life from a few hours to 23 days (hydrosilylated) or even longer (oxidized). We have confirmed that released daunorubicin is fully functional through the cell culture and MTT assays. We will first optimize the Psi vitreous stability by oxidations, hydrosilylations, and electrochemical grafting of organohalides. Psi with a good vitreous stability will be optimized for loading of the candidate drugs using physical trapping, electrostatic adsorption, covalent attachment, or layer by layer approaches. We will evaluate non-invasive monitoring of drug release in vitro and in vivo approaches. The optimized drug loaded Psi particles and its non-invasive sensing ability will be further evaluated in animal eyes and animal models for its pharmacokinetics and efficacy. We will also evaluate the ability of this system to offer synergistic effect on macular degeneration CNV animal model by injection of a mixture of two types of Psi particles (each type loaded with one drug). It is expected that the proposed Psi based ocular drug delivery systems will alleviate the need for frequent intravitreal injections or intraocular surgery for drug device planting, significantly improving the quality of life of patients.
描述(由申请人提供):对于用于治疗眼后部疾病的微创长效且可监测的药物递送系统存在重要的未满足的需求。由于难以穿过血-视网膜屏障,玻璃体内给药已成为治疗眼后部疾病的主要手段。目前可用的药物需要频繁的玻璃体内注射或侵入性手术眼内植入。该应用旨在开发和评估基于多孔硅 (Psi) 的玻璃体内药物输送系统。三种候选药物:贝伐单抗、柔红霉素和地塞米松将用作模型药物来研究这一新颖而独特的系统。贝伐珠单抗代表大分子,例如蛋白质;柔红霉素和地塞米松是针对脉络膜视网膜疾病的两个主要组成部分的小分子:不需要的增殖和炎症。我们假设 Psi 颗粒在玻璃体内注射后是无毒且可生物降解的,它们的孔隙率可用于承载治疗,并且它们的光学特性可用于远程报告药物释放。我们的初步数据表明,通过氧化或氢化硅烷化改变 Psi 的表面化学性质,Psi 颗粒在玻璃体内的保留时间可以从 1 周延长至 16 周,且不会产生眼毒性。我们的体外数据表明,柔红霉素的装载和去除改变了 Psi 颗粒的光谱,这些颗粒充当药物监测的条形码,可以通过数码相机捕获,从而可以在临床环境中对药物释放进行非侵入性监测。我们还表明,柔红霉素与氢化硅烷化或氧化的 Psi 颗粒共价连接可将药物半衰期从几小时延长至 23 天(氢化硅烷化)甚至更长(氧化)。我们通过细胞培养和 MTT 检测证实释放的柔红霉素具有完全的功能。我们将首先通过氧化、氢化硅烷化和有机卤化物的电化学接枝来优化 Psi 玻璃体稳定性。具有良好玻璃体稳定性的 Psi 将通过物理捕获、静电吸附、共价附着或逐层方法优化候选药物的负载。我们将评估体外和体内药物释放的非侵入性监测方法。优化后的载药Psi颗粒及其非侵入性传感能力将在动物眼和动物模型中进一步评估其药代动力学和功效。我们还将评估该系统通过注射两种类型的 Psi 颗粒的混合物(每种类型加载一种药物)对黄斑变性 CNV 动物模型提供协同效应的能力。预计所提出的基于 Psi 的眼部药物输送系统将减轻频繁玻璃体内注射或眼内手术进行药物装置植入的需要,从而显着提高患者的生活质量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
LINGYUN CHENG其他文献
LINGYUN CHENG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('LINGYUN CHENG', 18)}}的其他基金
Porous Silicon Particles for Sustained Intravitreal Drug Delivery
用于持续玻璃体内药物输送的多孔硅颗粒
- 批准号:
8538396 - 财政年份:2011
- 资助金额:
$ 51.33万 - 项目类别:
Porous Silicon Particles for Sustained Intravitreal Drug Delivery
用于持续玻璃体内药物输送的多孔硅颗粒
- 批准号:
8316278 - 财政年份:2011
- 资助金额:
$ 51.33万 - 项目类别:
Porous Silicon Particles for Sustained Intravitreal Drug Delivery
用于持续玻璃体内药物输送的多孔硅颗粒
- 批准号:
8105835 - 财政年份:2011
- 资助金额:
$ 51.33万 - 项目类别:
相似海外基金
Molecular Simulations of Additive Self-Assembly, Rheology, and Surface Adsorption in Complex Fluids
复杂流体中添加剂自组装、流变学和表面吸附的分子模拟
- 批准号:
2901619 - 财政年份:2024
- 资助金额:
$ 51.33万 - 项目类别:
Studentship
An Adsorption-Compression Cold Thermal Energy Storage System (ACCESS)
吸附压缩冷热能存储系统(ACCESS)
- 批准号:
EP/W027593/2 - 财政年份:2024
- 资助金额:
$ 51.33万 - 项目类别:
Research Grant
Tuning Precision Fabricated Liquid Crystal Adsorbents - Toward Tailored Adsorption of Per- and Polyfluorinated Alkyl Substances
调整精密制造的液晶吸附剂 - 针对全氟和多氟烷基物质的定制吸附
- 批准号:
24K17729 - 财政年份:2024
- 资助金额:
$ 51.33万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Thermal stability of adsorption solar power plants
吸附式太阳能发电厂的热稳定性
- 批准号:
2871817 - 财政年份:2024
- 资助金额:
$ 51.33万 - 项目类别:
Studentship
Computational Studies of Gas Adsorption in Special Nuclear Materials (SNMs).
特殊核材料(SNM)中气体吸附的计算研究。
- 批准号:
2903366 - 财政年份:2024
- 资助金额:
$ 51.33万 - 项目类别:
Studentship
Collaborative Research: Integrated experiments and simulations to understand the mechanism and consequences of polymer adsorption in films and nanocomposites
合作研究:综合实验和模拟来了解薄膜和纳米复合材料中聚合物吸附的机制和后果
- 批准号:
2312325 - 财政年份:2023
- 资助金额:
$ 51.33万 - 项目类别:
Standard Grant
Metal tolerance and metal adsorption through phycosphere control
通过藻圈控制实现金属耐受性和金属吸附
- 批准号:
23H02303 - 财政年份:2023
- 资助金额:
$ 51.33万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Investigation of adsorption of exosomes on porous materials and regulating the behavior to create separation, purification and preservation techniques
研究外泌体在多孔材料上的吸附并调节行为以创建分离、纯化和保存技术
- 批准号:
23KJ0192 - 财政年份:2023
- 资助金额:
$ 51.33万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Reflection and adsorption of low energy hydrogen on solid surface
低能氢在固体表面的反射与吸附
- 批准号:
23H01158 - 财政年份:2023
- 资助金额:
$ 51.33万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Super-Resolution Imaging of Surface Adsorption on Single Nanoparticles for Electrochemical Dechlorination
用于电化学脱氯的单个纳米颗粒表面吸附的超分辨率成像
- 批准号:
2303933 - 财政年份:2023
- 资助金额:
$ 51.33万 - 项目类别:
Standard Grant














{{item.name}}会员




