Dynamic mechanisms of active vision in prefrontal cortex
前额皮质主动视觉的动态机制
基本信息
- 批准号:8628457
- 负责人:
- 金额:$ 37.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-02-01 至 2019-01-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAmblyopiaAreaAttentionBehaviorBrainBrain DiseasesCodeCognitiveCommunicationDecision MakingDiagnosisDiseaseEnvironmentEyeEye MovementsFire - disastersGoalsIndividualInvestigationLeadLinear ModelsLinkMacacaMacular degenerationMapsMeasurementMeasuresMemoryMethodsMotorNervous system structureNeuronsNoiseNonlinear DynamicsOutcomePerceptionPerformancePlayPopulationPositioning AttributePrefrontal CortexPrimatesProcessPropertyProsthesisRehabilitation therapyReportingResearchRoleSaccadesScanningSensoryShapesSignal TransductionSourceStimulusStructureSystemTestingTimeTraumatic Brain InjuryVisionVisualVisual AgnosiasVisual CortexVisual PerceptionVisual attentionVisual system structureWorkactive visionbasebrain repaircognitive functionexperienceextrastriate visual cortexflexibilityfrontal eye fieldsfrontal lobeimprovedmeetingsmotor controlnervous system disorderneural circuitneuronal circuitryoculomotorpreferencepublic health relevancereceptive fieldrelating to nervous systemresearch studyresponsespatial neglectsuccessvisual informationvisual motorvisual processvisual processingvisual stimulus
项目摘要
Dynamic mechanisms of active vision in prefrontal cortex
PROJECT SUMMARY
Under natural conditions, our visual experience is characterized by frequent eye movements as we scan a rich
visual environment. Most experiments, however, have focused on neural responses under visually and
behaviorally impoverished conditions, sacrificing realistic conditions for tractability. There is a growing
realization that the brain's activity under these conditions does not always generalize to more natural settings,
and experiments that probe neuronal dynamics under more complicated situations are needed. The long-term
goal of this application is to determine how neural circuits in the primate brain act to generate coherent visual
perception despite frequent eye movements and changes in internal cognitive state. The frontal eye field (FEF),
a part of prefrontal cortex critical for controlling saccadic eye movements, plays a key role in this function
through its unique position in the cortical hierarchy. FEF neurons serve both visual and motor functions, with
connections to subcortical structures that control the eyes and to visual cortical areas. How do FEF neurons act
in this gateway, serving the dual functions of integrating visual information to guide eye movements and
informing the visual system about planned motor commands? One clue comes from studies of the
phenomenon of predictive remapping, in which neurons shift their spatial preferences prior to an impending
saccade. This occurs in FEF neurons as well as other cortical areas, and hints at the frequent and dynamic
changes in their response properties. What kinds of dynamic changes are brought on by motor planning? How
does the information necessary to generate these dynamics propagate through neuronal circuits? We will
address these questions in three specific aims, the first of which uses rapidly presented sparse noise stimuli, an
approach developed in early visual areas, to probe the dynamics of FEF neuronal responses. We hypothesize
that FEF neurons have precise temporal dynamics, enabling responses to rapidly flashed stimuli, and nonlinear
spatial summation, leading to strong responses to small stimuli that are perceived as potential saccade targets.
The second specific aim is to measure the predictively remapped response with high spatial and temporal
precision using the same noise stimulus. We hypothesize that remapping manifests as a gradual shift in the
receptive field in the peri-saccadic time period, and this occurs for both guided saccades and more naturalistic
spontaneous saccades. In the third specific aim, we attempt to isolate the neuronal circuitry responsible for
these dynamic changes by recording simultaneously from a population of FEF neurons. We hypothesize that
local circuitry within FEF is invoked to transfer information between neurons prior to an eye movement. The
overall result of this study will be to establish the role of FEF in integrating visual perception and motor control
during active vision, and to construct a framework for using receptive field mapping and population recordings
to measure dynamic changes in neural circuits across visual and motor systems. This will aid in developing
treatments for neurological disorders of vision and rehabilitation after traumatic brain injury or disease.
前额叶皮质主动视觉的动力学机制
项目总结
在自然条件下,我们的视觉体验的特点是眼睛频繁运动,因为我们扫描丰富的
视觉环境。然而,大多数实验都集中在视觉和视觉条件下的神经反应。
行为贫困的条件,牺牲现实条件来换取驯服。有一个不断增长的
意识到大脑在这些条件下的活动并不总是推广到更自然的环境中,
还需要在更复杂的情况下探索神经元动力学的实验。长期的
这项应用的目标是确定灵长类大脑中的神经回路如何产生连贯的视觉
尽管眼睛频繁运动和内部认知状态发生变化,但仍有感知能力。额眼视野(FEF),
前额叶皮质是控制眼球跳动的关键部位,在这一功能中起关键作用。
通过它在大脑皮层层级中的独特位置。FEF神经元同时服务于视觉和运动功能,
连接到控制眼睛的皮质下结构和视觉皮质区域。FEF神经元是如何发挥作用的
在这个网关中,具有整合视觉信息指导眼动和眼动的双重功能
将计划好的运动指令通知视觉系统?一条线索来自于对
预测性重新映射现象,神经元在即将到来的映射之前改变其空间偏好
扫视。这发生在FEF神经元以及其他皮质区域,并暗示了频繁和动态的
它们的响应属性的更改。汽车规划带来了什么样的动态变化?多么
产生这些动力学所需的信息是否通过神经元回路传播?我们会
在三个具体目标中解决这些问题,第一个目标使用快速呈现的稀疏噪声刺激,以及
在早期视觉区域发展的方法,以探索FEF神经元反应的动力学。我们假设
FEF神经元具有精确的时间动力学,能够对快速闪烁的刺激做出反应,并且是非线性的
空间总和,导致对被视为潜在眼跳目标的小刺激的强烈反应。
第二个具体目标是测量具有较高空间和时间维度的预测性重映射反应
使用相同的噪声刺激进行精确处理。我们假设,重新映射表现为
眼跳周围时间段的感受野,这种情况在导视和更自然主义的眼跳中都会发生
自发的扫视。在第三个特定目标中,我们试图分离负责
这些动态变化是通过同时记录一组FEF神经元来实现的。我们假设
在眼球运动之前,FEF内的局部电路被调用以在神经元之间传递信息。这个
这项研究的总体结果将是确定FEF在整合视觉感知和运动控制方面的作用
在主动视觉过程中,并构建使用接受性视野映射和人口记录的框架
以测量视觉和运动系统中神经回路的动态变化。这将有助于开发
治疗外伤性脑损伤或疾病后的神经视觉障碍和康复。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MATTHEW A SMITH其他文献
MATTHEW A SMITH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MATTHEW A SMITH', 18)}}的其他基金
Slow time scale fluctuations in neurons and behavior
神经元和行为的缓慢时间尺度波动
- 批准号:
10521614 - 财政年份:2022
- 资助金额:
$ 37.65万 - 项目类别:
Slow time scale fluctuations in neurons and behavior
神经元和行为的缓慢时间尺度波动
- 批准号:
10693284 - 财政年份:2022
- 资助金额:
$ 37.65万 - 项目类别:
CRCNS: Modulating Neural Population Interactions between Cortical Areas
CRCNS:调节皮质区域之间的神经群体相互作用
- 批准号:
10161625 - 财政年份:2018
- 资助金额:
$ 37.65万 - 项目类别:
CRCNS: Modulating Neural Population Interactions between Cortical Areas
CRCNS:调节皮质区域之间的神经群体相互作用
- 批准号:
10404046 - 财政年份:2018
- 资助金额:
$ 37.65万 - 项目类别:
CRCNS: Modulating Neural Population Interactions between Cortical Areas
CRCNS:调节皮质区域之间的神经群体相互作用
- 批准号:
9906912 - 财政年份:2018
- 资助金额:
$ 37.65万 - 项目类别:
CRCNS: Modulating Neural Population Interactions between Cortical Areas
CRCNS:调节皮质区域之间的神经群体相互作用
- 批准号:
9755523 - 财政年份:2018
- 资助金额:
$ 37.65万 - 项目类别:
Dynamic mechanisms of active vision in prefrontal cortex
前额皮质主动视觉的动态机制
- 批准号:
9211352 - 财政年份:2014
- 资助金额:
$ 37.65万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 37.65万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 37.65万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 37.65万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 37.65万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 37.65万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 37.65万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 37.65万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 37.65万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 37.65万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 37.65万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




