Theoretical modeling on mechanochemical feedbacks of cellular processes

细胞过程机械化学反馈的理论模型

基本信息

项目摘要

1. Membrane Trafficking: a) Membrane wave: In collaboration with Dr. Min Wu from National University of Singapore, we established a mechanochemical feedback model that accounts for the ultrafast rhythmic propagation (>1micron/sec) of the endocytic machine on plasma membrane in immune cells. Following our previous model, we found that immune cells exhibit distinct rhythmic patterns on cortex depending on stimulation. These rhythmic propagations are ultrafast (>1μm/sec), much faster than typical cellular traveling waves. Combining theory and experiment, we demonstrated that the feedback between membrane shape change and cortical protein dynamics (e.g., F-BAR domain proteins) drove their own oscillatory behaviors, rendering the cortex as an excitable system. Such excitability manifests itself as phase wave arising from the spatial gradient of cortical activation. Instead of real material propagation, it was this spatial gradient in the timings of the local oscillations that gave the propagating appearance, and it was the resulting phase velocity that dictated the ultrafast propagation speed. Interestingly, as the membrane topographic change accompanied such rhythm, it further fired up the cortical activation along the propagation path, potentiating wave propagation farther beyond the initial epicenter. This work uncovers the under-appreciated role of membrane shape in setting the spread rhythm of cortical activation signal. This paper is under review in PLoS Biology. 2. Cell Division: a) Spatial-temporal regulation of spindle assembly checkpoint: Faithful chromosome segregation in mitosis requires stable microtubule spindle attachment at the kinetochores (KT) of each chromosome. Until then the spindle assembly checkpoint (SAC) is active to prevent mitotic progression. However, the everlasting stochastic fluctuations and large KT number in the cell would deny robust timing of SAC silencing. From the stably attached KT, SAC components stream toward the spindle poles (SP). Incorporating the spatial-temporal regulation, we established a theoretical model that unprecedentedly accounted for the fidelity of SAC silencing. The poleward streaming from the attached KTs is integrated by the SP, yet diverted by the unattached KTs until the last KT-spindle attachment, causing a >2 fold jump in the SP accumulation. Such jump robustly triggers SAC silencing after and only after the last KT-spindle attachment. Our model explained intriguing observations on mitosis and offered a unified conceptual framework: Spatial-temporal regulation ensures the fidelity of SAC silencing. This paper is published in Nature Communications. b) The role of spindle pole organization in faithful mitotic exit: In previous work, we found that the spindle pole integrates the information from the kinetochores to govern the progression of mitosis, in particular the SAC silencing with regard to the last kinetochore-spindle attachment and thereby the correct timing for anaphase onset. In this study, we extended our model to incorporate the effects of supernumerary and the disorganization of spindle poles, which often manifest themselves in cancer cells. We found that fine-control over the number, the geometry and the size of spindle poles is the fundamental determinant for mitotic progression. Furthermore, the organization of the spindle poles must coordinate with the kinetochore tension for faithful anaphase onset. This result sheds light on the origin and the treatment of cancer cells. It puts diverse observations in cancer cell mitosis into perspective. The paper is submitted to Molecular Systems Biology. c) The mechanochemistry of low-copy-number plasmid segregation machinery The segregation of DNA prior to cell division is essential to the faithful inheritance of the genetic materials. In many bacteria, the segregation of the low-copy-number plasmids involves an active partition system composed of ParA ATPase and DNA-binding ParB protein, which stimulates the hydrolysis activity of ParA. Both in vivo and in vitro experiments show that ParA/ParB system can drive persistent movement in a directed fashion, just like a processive motor protein. However, the underlying mechanism remains unknown. We have developed the first theoretical model on ParA/ParB-mediated motility. We establish that the coupling between the ParA/ParB biochemistry and its mechanical action works as a robust engine. It powers the directed movement of plasmids, buffering against diffusive motion. Our work thus sheds light on a new emergent phenomenon, in which elaborate mechanochemical couplings of non-motor proteins can work collectively to propel cargos to designated locations, an ingenious way shaped by evolution to cope with the lack of processive motor proteins in bacteria. This paper is submitted to PNAS. 3. Cell Motility: a) Mechanochemistry of focal adhesion formation: Durotaxis cells prefer to migrate toward stiffer substrate is important for many physiological processes. Focal adhesion (FA) is a dynamically formed organelle, serving as the foot of migrating cells. To better understand the mechanosensation underlying durotaxis, we provided the first theoretical model that integrates the contributions of branched actin network and stress fiber in the FA formation. It captured the salient features of FA growth in coupling with the cell leading edge protrusion. The model predicted two traction force peaks emerging within the growing FA: While the distal traction peak originates from the catch bonds that mediate FA-retrograde actin flux engagement, the central one is generated by the actomyosin contractility from stress fiber. The centraal traction peak oscillation due to the stress fiber-mediated negative feedback optimizes the range of FA mechanosensing on substrate stiffness. The competition between the two sources of tractions gives rise to the traction peak oscillation within single FAs. We experimentally perturbed the two types of actin networks, and convincingly verified these unique model predictions. Our study thereby established the coherent picture of FA formation. FA is truly a mechanosensory organelle: Its traction force generation is part of the FA-intrinsic regulatory feedbacks, which consolidate the dynamics of branched actin network and stress fiber to precisely measure up the substrate stiffness in the physiological range. Our work thus sheds light on the mechanistic nature of durotaxis. This paper is in collaboration with Dr. Clare Waterman's lab, and is under 2nd round revision for PNAS.
1. 膜贩运:

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jian Liu其他文献

Jian Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jian Liu', 18)}}的其他基金

Predictive multi-scale model of focal adhesion-based durotaxis
基于粘着斑的 durotaxis 的预测多尺度模型
  • 批准号:
    10798520
  • 财政年份:
    2023
  • 资助金额:
    $ 111.94万
  • 项目类别:
Predictive multi-scale model of focal adhesion-based durotaxis
基于粘着斑的 durotaxis 的预测多尺度模型
  • 批准号:
    10562825
  • 财政年份:
    2023
  • 资助金额:
    $ 111.94万
  • 项目类别:
3D printing of Tungsten Radial Collimator
钨径向准直器的 3D 打印
  • 批准号:
    10004837
  • 财政年份:
    2020
  • 资助金额:
    $ 111.94万
  • 项目类别:
Portable photoacoustic microscopy
便携式光声显微镜
  • 批准号:
    7656172
  • 财政年份:
    2009
  • 资助金额:
    $ 111.94万
  • 项目类别:
Portable Fiber Lasers for Multiphoton Endoscope
用于多光子内窥镜的便携式光纤激光器
  • 批准号:
    7536162
  • 财政年份:
    2008
  • 资助金额:
    $ 111.94万
  • 项目类别:
A compact high-power ultrafast fiber laser system for high resolution and high se
紧凑型高功率超快光纤激光系统,具有高分辨率和高灵敏度
  • 批准号:
    7481349
  • 财政年份:
    2008
  • 资助金额:
    $ 111.94万
  • 项目类别:
A compact high power ultrashort femtosecond fiber laser for high resolution secon
紧凑型高功率超短飞秒光纤激光器,用于高分辨率秒
  • 批准号:
    7269228
  • 财政年份:
    2007
  • 资助金额:
    $ 111.94万
  • 项目类别:
Theoretical modeling on mechanochemical feedbacks of cellular processes
细胞过程机械化学反馈的理论模型
  • 批准号:
    9357232
  • 财政年份:
  • 资助金额:
    $ 111.94万
  • 项目类别:
Theoretical modeling on mechanochemical feedbacks of cellular processes
细胞过程机械化学反馈的理论模型
  • 批准号:
    8558026
  • 财政年份:
  • 资助金额:
    $ 111.94万
  • 项目类别:
Theoretical modeling on mechanochemical feedbacks of cellular processes
细胞过程机械化学反馈的理论模型
  • 批准号:
    8344881
  • 财政年份:
  • 资助金额:
    $ 111.94万
  • 项目类别:

相似海外基金

Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
  • 批准号:
    24K16488
  • 财政年份:
    2024
  • 资助金额:
    $ 111.94万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Mighty Accounting - Accountancy Automation for 1-person limited companies.
Mighty Accounting - 1 人有限公司的会计自动化。
  • 批准号:
    10100360
  • 财政年份:
    2024
  • 资助金额:
    $ 111.94万
  • 项目类别:
    Collaborative R&D
Accounting for the Fall of Silver? Western exchange banking practice, 1870-1910
白银下跌的原因是什么?
  • 批准号:
    24K04974
  • 财政年份:
    2024
  • 资助金额:
    $ 111.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CPS: Medium: Making Every Drop Count: Accounting for Spatiotemporal Variability of Water Needs for Proactive Scheduling of Variable Rate Irrigation Systems
CPS:中:让每一滴水都发挥作用:考虑用水需求的时空变化,主动调度可变速率灌溉系统
  • 批准号:
    2312319
  • 财政年份:
    2023
  • 资助金额:
    $ 111.94万
  • 项目类别:
    Standard Grant
A New Direction in Accounting Education for IT Human Resources
IT人力资源会计教育的新方向
  • 批准号:
    23K01686
  • 财政年份:
    2023
  • 资助金额:
    $ 111.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
An empirical and theoretical study of the double-accounting system in 19th-century American and British public utility companies
19世纪美国和英国公用事业公司双重会计制度的实证和理论研究
  • 批准号:
    23K01692
  • 财政年份:
    2023
  • 资助金额:
    $ 111.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
An Empirical Analysis of the Value Effect: An Accounting Viewpoint
价值效应的实证分析:会计观点
  • 批准号:
    23K01695
  • 财政年份:
    2023
  • 资助金额:
    $ 111.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Accounting model for improving performance on the health and productivity management
提高健康和生产力管理绩效的会计模型
  • 批准号:
    23K01713
  • 财政年份:
    2023
  • 资助金额:
    $ 111.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New Role of Not-for-Profit Entities and Their Accounting Standards to Be Unified
非营利实体的新角色及其会计准则将统一
  • 批准号:
    23K01715
  • 财政年份:
    2023
  • 资助金额:
    $ 111.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Improving Age- and Cause-Specific Under-Five Mortality Rates (ACSU5MR) by Systematically Accounting Measurement Errors to Inform Child Survival Decision Making in Low Income Countries
通过系统地核算测量误差来改善特定年龄和特定原因的五岁以下死亡率 (ACSU5MR),为低收入国家的儿童生存决策提供信息
  • 批准号:
    10585388
  • 财政年份:
    2023
  • 资助金额:
    $ 111.94万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了