Predictive multi-scale model of focal adhesion-based durotaxis
基于粘着斑的 durotaxis 的预测多尺度模型
基本信息
- 批准号:10562825
- 负责人:
- 金额:$ 39.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-23 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:ActinsAddressAffectBackBehaviorBindingBiological ProcessCell Adhesion MoleculesCellsChemicalsComplexCouplesCouplingCytoskeletonData AnalysesDevelopmentDevelopmental ProcessEmbryonic DevelopmentEnvironmentEventExperimental DesignsExperimental ModelsExtracellular MatrixFeedbackFeedsFocal AdhesionsGenerationsGoalsIndividualIntegral Membrane ProteinIntegrinsLinkMeasuresMechanicsMediatingModelingMolecularMonitorMovementNatureNeoplasm MetastasisPatternProcessProtein DynamicsProteinsResearchResearch PersonnelResolutionRoleShapesStress FibersTestingTimeTractionWorkcell motilitychemical reactionexperimental studygraspin silicoinfancyinsightlive cell imagingmathematical modelmechanotransductionmulti-scale modelingpredictive modelingpreferenceskillssynergismtemporal measurementtooltransmission processtumoruser friendly software
项目摘要
Project Summary
The over-arching goal of this proposal is to establish the predictive multi-scale mathematical model to decipher the
mechanism of durotaxis. Durotaxis is the preference of cells migrating toward a stiffer extracellular matrix (ECM) and has
important roles in many biological processes, ranging from embryo development to tumor metastasis. Focal adhesion (FA)
is the functional unit of durotaxis; it an integrin-based multi-protein transmembrane linkage, through which cell exerts actin
cytoskeleton-based traction force to tug the ECM and sense the stiffness. Despite the high relevance to biomedical
applications, it is not well understood how FA mediates mechanosensing of ECM stiffness and drives durotaxis, largely
because predictive mathematical models lag behind the descriptive experimental finding in the field. At single-FA level,
while previous models explain molecular-clutch behaviors in FA mechanosensing, they cannot explain how and why FA-
localized protein activities adapt to environments by distinctive spatial-temporal patterns (akin to footprints) that are
demonstrated to be essential for durotaxis. The full underlying mechanisms of the FA-localized “footprint” and its exact
roles in durotaxis are thus unknown. Further, durotaxis must coordinate movements of cell body and protrusion/retraction
of cell edge. While the FA-mediated tractions drive the cell body, how the FA-localized mechanosensing events coordinate
with the cell edge dynamics is unknown. Last, at a single-cell level, there exist many FAs at different developmental stages
at any time. It is not understood how the cell integrates the mechanosensing activities of individual FAs to drive durotaxis.
A predictive model that meaningfully engages with experiments is desirable and likely holds the key to decipher
durotaxis. Toward this goal, we have been and will uniquely integrate mathematical modeling in iterative dialogues with
experimental testing. The central hypothesis is: FA-localized spatial-temporal dynamics of the traction force generation and
transmission defines FA-mediated mechanosensing and durotaxis. The basis of this proposal is our previous findings. We
built the first mathematical model that captures the essence of entire FA maturation process. That is, FA evolves from a
nascent complex, the centripetally growing FA that couples the retrograde flux of branching actin network, to the mature
FA that transmits the stress fiber (SF)-mediated contractions onto ECM. This model uniquely links the FA-localized fine
features of protein activities – emerging from FA maturation process – to FA mechanosensing events. The model predicted
and was experimentally confirmed that a negative feedback between the elongation and contractility of the FA-engaging SF
underlies the FA-localized traction oscillation and mechanosensing of ECM stiffness. Ushered by these findings, our
specific aims are to determine: 1) how FA force-transmission and SF elongation cross-talk in FA mechanosensing; 2) how
FA mechanosensing affects cell edge protrusion/retraction, and 3) how cell integrates mechanosensation of individual FAs
to drive durotaxis. If successful, the proposed research would provide a quantitative platform interpret data and guide
durotaxis experimental designs, which has the multi-scale resolutions ranging from FA-localized dynamics, cell edge
protrusion/retraction, to cell movement at whole-cell level.
项目概要
该提案的总体目标是建立预测性多尺度数学模型来破译
杜罗轴机制。 Durotaxis 是细胞向较硬的细胞外基质 (ECM) 迁移的偏好,并且具有
在许多生物过程中发挥重要作用,从胚胎发育到肿瘤转移。粘着斑 (FA)
是 durotaxis 的功能单位;它是一种基于整合素的多蛋白跨膜连接,细胞通过它发挥肌动蛋白
基于细胞骨架的牵引力来牵引 ECM 并感知刚度。尽管与生物医学高度相关
应用中,目前尚不清楚 FA 如何介导 ECM 刚度的机械传感并驱动 durotaxis,很大程度上
因为预测数学模型落后于该领域的描述性实验发现。在单一 FA 级别,
虽然以前的模型解释了 FA 机械传感中的分子离合器行为,但它们无法解释 FA 如何以及为何
局部蛋白质活动通过独特的时空模式(类似于足迹)来适应环境,这些模式是
被证明对于 durotaxis 至关重要。 FA本地化“足迹”的完整底层机制及其确切
因此,在 durotaxis 中的作用尚不清楚。此外,杜罗轴必须协调细胞体的运动和突出/缩回
细胞边缘。虽然 FA 介导的牵引力驱动细胞体,但 FA 局部机械传感事件如何协调
细胞边缘动力学未知。最后,在单细胞水平上,存在许多处于不同发育阶段的FA
随时。目前尚不清楚细胞如何整合各个 FA 的机械传感活动来驱动 durotaxis。
有意义地参与实验的预测模型是可取的,并且可能掌握着破译的关键
杜罗轴。为了实现这一目标,我们已经并将以独特的方式将数学建模与迭代对话相结合
实验测试。中心假设是:牵引力产生的 FA 局部时空动力学
传输定义了 FA 介导的机械传感和 durotaxis。该提案的基础是我们之前的发现。我们
建立了第一个捕捉整个 FA 成熟过程本质的数学模型。也就是说,FA是从
新生复合体,向心生长的 FA,将分支肌动蛋白网络的逆行通量耦合到成熟的复合体
FA 将应力纤维 (SF) 介导的收缩传输到 ECM。该模型独特地链接了FA本地化的精细
蛋白质活性的特征——从 FA 成熟过程中出现——到 FA 机械传感事件。模型预测
并通过实验证实 FA 接合 SF 的伸长率和收缩性之间存在负反馈
是 FA 局部牵引振动和 ECM 刚度机械传感的基础。受到这些发现的启发,我们
具体目标是确定:1) FA 机械传感中 FA 力传递和 SF 伸长如何相互干扰; 2)如何
FA 机械传感影响细胞边缘突出/缩回,以及 3) 细胞如何整合单个 FA 的机械传感
驱动杜罗轴。如果成功,拟议的研究将提供一个解释数据和指导的定量平台
durotaxis 实验设计,具有从 FA 局部动力学、细胞边缘到多尺度分辨率
突出/缩回,以实现全细胞水平的细胞运动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jian Liu其他文献
Jian Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jian Liu', 18)}}的其他基金
Predictive multi-scale model of focal adhesion-based durotaxis
基于粘着斑的 durotaxis 的预测多尺度模型
- 批准号:
10798520 - 财政年份:2023
- 资助金额:
$ 39.79万 - 项目类别:
Portable Fiber Lasers for Multiphoton Endoscope
用于多光子内窥镜的便携式光纤激光器
- 批准号:
7536162 - 财政年份:2008
- 资助金额:
$ 39.79万 - 项目类别:
A compact high-power ultrafast fiber laser system for high resolution and high se
紧凑型高功率超快光纤激光系统,具有高分辨率和高灵敏度
- 批准号:
7481349 - 财政年份:2008
- 资助金额:
$ 39.79万 - 项目类别:
A compact high power ultrashort femtosecond fiber laser for high resolution secon
紧凑型高功率超短飞秒光纤激光器,用于高分辨率秒
- 批准号:
7269228 - 财政年份:2007
- 资助金额:
$ 39.79万 - 项目类别:
Theoretical modeling on mechanochemical feedbacks of cellular processes
细胞过程机械化学反馈的理论模型
- 批准号:
9357232 - 财政年份:
- 资助金额:
$ 39.79万 - 项目类别:
Theoretical modeling on mechanochemical feedbacks of cellular processes
细胞过程机械化学反馈的理论模型
- 批准号:
8939857 - 财政年份:
- 资助金额:
$ 39.79万 - 项目类别:
Theoretical modeling on mechanochemical feedbacks of cellular processes
细胞过程机械化学反馈的理论模型
- 批准号:
8558026 - 财政年份:
- 资助金额:
$ 39.79万 - 项目类别:
Theoretical modeling on mechanochemical feedbacks of cellular processes
细胞过程机械化学反馈的理论模型
- 批准号:
8344881 - 财政年份:
- 资助金额:
$ 39.79万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 39.79万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 39.79万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 39.79万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 39.79万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 39.79万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 39.79万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 39.79万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 39.79万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 39.79万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 39.79万 - 项目类别:
Research Grant














{{item.name}}会员




