Protein Sequencing Tools for Biological Therapeutics
用于生物治疗的蛋白质测序工具
基本信息
- 批准号:8731420
- 负责人:
- 金额:$ 10.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-03 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:Algorithmic SoftwareAlgorithmsAmino Acid SequenceAmino Acid Sequence DatabasesAmino AcidsAntibodiesAntibody RepertoireBase CompositionBasic ScienceBenchmarkingBiologicalChargeCollectionComplex MixturesComputer SimulationComputer softwareConeCysteineDataData AnalysesDatabasesDepositionDevelopmentDigestionDrug IndustryEnvironmentFamily StudyGasesGenerationsGenomeGoalsHIVHIV NonprogressorsImmunoglobulin Constant RegionIndividualIon ChannelIonsKnowledgeLabelLaboratoriesLanguageLibrariesManualsMass Spectrum AnalysisMeasurableMeasuresMethodsMutationOrganismPatternPeptide Sequence DeterminationPeptide antibodiesPeptidesPhasePositioning AttributeProtein FamilyProteinsResearchServicesSnailsSpecific qualifier valueSpidersTestingTherapeuticTimeToxinVaccinesVenomsVisualbaseclinical applicationcomplementarity-determining region 3costdata acquisitiondrug developmenthigh throughput analysisimprovednovelprotein aminoacid sequenceprototypequality assuranceresponsetoolvaccine development
项目摘要
DESCRIPTION (provided by applicant): Mass spectrometry has become a method of choice for identifying and characterizing small quantities of proteins in complex mixtures. However, the ability to perform the identification in a high- throughput fashion has depended on the availabilit of protein sequence databases. This means that proteins from organisms with unsequenced genomes (e.g. peptide toxins) and proteins that modify their primary sequence rapidly in response to the environment (e.g. antibodies) have been excluded from high-throughput analysis. We propose to develop algorithms and software along with improving laboratory methods that make sequencing of antibodies and peptide toxins a fast and low-cost effort. This will allow us to access the circulating antibody repertoire of individuals for clinical application including vaccine development, and to access the vast number of bioactive venom components for basic research and ion-channel drug development. For the laboratory improvements, antibody peptides and toxins will be chemically labeled to improve spectral quality and we will use different types of mass spectrometric fragmentation. Data acquisition will be optimized to facilitate identification of diagnostically relevant peptides and a gas- phase digestion strategy will be used to increase the sequence coverage for larger peptides. We propose to develop improved algorithms for sequencing of antibodies and peptide toxins. These will integrate de novo and database sequencing and will include candidate generation algorithms incorporating multiple channels of information: spectra from different charge states and fragmentation methods, homology constraints, composition constraints, and in silico mutation of databases. Improved scoring algorithms will also be developed using subtle spectrum clues, currently used only in manual de novo sequencing. We will produce prototype software, and benchmark it against manually annotated mass spectra. The software will then be applied to automatically sequence a large set of antibody data from long- term non-progressors of HIV, and spider and cone snail toxin data.
描述(由申请人提供):质谱法已成为鉴定和表征复杂混合物中少量蛋白质的首选方法。然而,以高通量方式进行鉴定的能力依赖于蛋白质序列数据库的可用性。这意味着来自具有未测序基因组的生物体的蛋白质(例如肽毒素)和响应于环境而快速改变其一级序列的蛋白质(例如抗体)已被排除在高通量分析之外。 我们建议开发算法和软件沿着改进实验室方法,使抗体和肽毒素的测序成为快速和低成本的工作。这将使我们能够获得用于临床应用(包括疫苗开发)的个体循环抗体库,并获得用于基础研究和离子通道药物开发的大量生物活性毒液成分。 对于实验室改进,抗体肽和毒素将被化学标记以提高光谱质量,我们将使用不同类型的质谱裂解。将优化数据采集以促进诊断相关肽的鉴定,并将使用气相消化策略来增加较大肽的序列覆盖率。 我们建议开发用于抗体和肽毒素测序的改进算法。这些将整合从头和数据库测序,并将包括候选生成算法,纳入多个渠道的信息:光谱从不同的电荷状态和碎片化方法,同源性约束,组成约束,并在计算机突变的数据库。改进的评分算法也将开发使用微妙的光谱线索,目前只用于手动从头测序。 我们将制作原型软件,并将其与手动注释的质谱进行基准测试。然后,该软件将被应用于自动测序来自HIV的长期非进展者的大量抗体数据以及蜘蛛和锥形蜗牛毒素数据。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Purification and enzymatic characterization of a novel metalloprotease from Lachesis muta rhombeata snake venom.
- DOI:10.1186/s40409-018-0171-x
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Cordeiro FA;Coutinho BM;Wiezel GA;Bordon KCF;Bregge-Silva C;Rosa-Garzon NG;Cabral H;Ueberheide B;Arantes EC
- 通讯作者:Arantes EC
Identification of hyaluronidase and phospholipase B in Lachesis muta rhombeata venom.
Lachesis muta rhombeata 毒液中透明质酸酶和磷脂酶 B 的鉴定。
- DOI:10.1016/j.toxicon.2015.08.029
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:Wiezel,GiseleA;dosSantos,PattyK;Cordeiro,FrancielleA;Bordon,KarlaCF;Selistre-de-Araújo,HeloisaS;Ueberheide,Beatrix;Arantes,ElianeC
- 通讯作者:Arantes,ElianeC
Subproteome of Lachesis muta rhombeata venom and preliminary studies on LmrSP-4, a novel snake venom serine proteinase.
Lachesis muta rhombeata 毒液亚蛋白质组及新型蛇毒丝氨酸蛋白酶 LmrSP-4 的初步研究。
- DOI:10.1590/1678-9199-jvatitd-1470-18
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Wiezel,GiseleA;Bordon,KarlaCf;Silva,RonivaldoR;Gomes,MárioSr;Cabral,Hamilton;Rodrigues,VeridianaM;Ueberheide,Beatrix;Arantes,ElianeC
- 通讯作者:Arantes,ElianeC
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Fenyo其他文献
David Fenyo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Fenyo', 18)}}的其他基金
Protein Sequencing Tools for Biological Therapeutics
用于生物治疗的蛋白质测序工具
- 批准号:
8315630 - 财政年份:2012
- 资助金额:
$ 10.88万 - 项目类别:
Protein Sequencing Tools for Biological Therapeutics
用于生物治疗的蛋白质测序工具
- 批准号:
8979388 - 财政年份:2012
- 资助金额:
$ 10.88万 - 项目类别:
Protein Sequencing Tools for Biological Therapeutics
用于生物治疗的蛋白质测序工具
- 批准号:
8539637 - 财政年份:2012
- 资助金额:
$ 10.88万 - 项目类别:
AUTOMATIC PEAK FINDING AND DATABASE SEARCH USING RAW MALDI-LTQ-ORBITRAP DATA
使用原始 MALDI-LTQ-ORBITRAP 数据自动找峰和数据库搜索
- 批准号:
8361585 - 财政年份:2011
- 资助金额:
$ 10.88万 - 项目类别:
DETECTION AND CORRECTION OF INTERFERENCE IN MRM ANALYSIS
MRM 分析中干扰的检测和校正
- 批准号:
8361582 - 财政年份:2011
- 资助金额:
$ 10.88万 - 项目类别:
STATISTICAL BASIS FOR DETERMINING SIGNIFICANCE OF LOCALIZATION OF MODIFICATIONS
确定修改本地化重要性的统计基础
- 批准号:
8361583 - 财政年份:2011
- 资助金额:
$ 10.88万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 10.88万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 10.88万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 10.88万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 10.88万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 10.88万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 10.88万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 10.88万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 10.88万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 10.88万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 10.88万 - 项目类别:
Continuing Grant














{{item.name}}会员




