HashtagHealth: A Social Media Big Data Resource for Neighborhood Effects Research

HashtagHealth:用于邻里效应研究的社交媒体大数据资源

基本信息

  • 批准号:
    8828979
  • 负责人:
  • 金额:
    $ 15.57万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-29 至 2019-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION: My goal in seeking a Mentored Research Career Development Award is to acquire the necessary training, practical experience, and knowledge to become a leading independent investigator who harnesses biomedical Big Data Science for the investigation of multilevel influences on health. To continue my progress towards this goal, I am proposing to build the infrastructure to establish a neighborhood data repository, HashtagHealth, for public health researchers and policy makers. I am a highly trained researcher in social epidemiology and quantitative analyses, particularly large health surveys. Before coming to Utah, I worked as a full-time statistical programmer/data analyst on a NIH-funded project to evaluate the health effects of a large neighborhood relocation policy experiment on low-income families in five cities. Our study results suggested that moving from high- to lower poverty neighborhood is related to reductions in obesity and diabetes and improved mental health. Other extant research has provided evidence on associations between the neighborhood environment and mortality and morbidity-even after adjusting for individual characteristics. Poor access to healthy food, fast food chains, the lack of recreational facilities, and higher crime rates all correlate with hiher obesity rates. Nonetheless, the dearth of neighborhood data, especially measures of neighborhood quality that are consistent across geographic areas, limits neighborhood effects research. Moreover, neighborhoods are not only defined by their resources, but also by the social interactions and activities of people who live there. The widespread usage of the internet and open recording of many transactions has led to the availability of massive amounts of data that permits capture of previously hidden micro-level interactions. We will build the data algorithms and infrastructure to harness relatively untapped, cost efficient, and pervasive social media data to develop neighborhood indicators such as food themes, healthiness of food mentions, frequency of exercise/recreation mentions, metabolic intensity of physical activities, and happiness levels. The creation of HashtagHealth requires the use and refinement of Big Data methods to perform data mining, processing and storing of heterogeneous, unstructured data. We will build a testable version of HashtagHealth for the state of Utah and then apply the data resource to the examination of neighborhood effects on young adult obesity. My rigorous training and previous research experiences in social determinants of health, causal inference, and data analyses uniquely prepare me to make significant contributions to the field of Big Data, particularly at the intersection of public health and social sciences. My Specific Aims are: 1) to develop a neighborhood data resource, HashtagHealth, for public health researchers, 2) to develop Big Data techniques to produce novel neighborhood quality indicators (e.g., healthiness of food mentions, frequency and type of exercise/recreation and happiness levels), and 3) to utilize HashtagHealth and individual-level data from the Utah Population Database to investigate neighborhood influences on obesity among young adults. My mentorship team includes experts in biomedical research (Drs. Ken Smith, Jim VanDerslice), computer science (Dr. Feifei Li), and statistics (Dr. Ming Wen). My team has the breadth of expertise to help me obtain critical multidisciplinary skills and successfully implement my research aims. In addition to my research aims, my Specific Career Development Aims include the following: 1) to develop expertise in data mining and database systems, 2) to acquire training in natural language processing and machine learning, 3) to further gain knowledge of geographic information systems (GIS), 4) to develop expertise in study design and analysis of neighborhood effects, and 5) and to develop grant writing and research management skills to lead future projects. The knowledge and experience gained from this proposal will allow me to successfully compete for R01 funding to create a national neighborhood data repository and to investigate national patterns of neighborhood effects on obesity. This proposal makes significant, relevant contributions to the field because 1) neighborhood environments are increasingly linked to important health outcomes, and 2) this project addresses the limits to research resulting from the lack of neighborhood data by providing new, cost-efficient data resources and methods for characterizing neighborhoods.
描述:我寻求指导研究职业发展奖的目标是获得必要的培训,实践经验和知识,成为一名领先的独立研究者,他们利用生物医学大数据科学来调查多层次的影响对健康的影响。为了继续朝着这一目标朝着这个目标迈进,我建议建立基础架构,以建立一个邻里数据存储库Hashtaghealth,以供公共卫生研究人员和政策制定者。我是社会流行病学和定量分析的训练有素的研究员,尤其是大型健康调查。来到犹他州之前,我曾在NIH资助的项目中担任专职统计程序员/数据分析师,以评估大型社区搬迁政策实验对五个城市低收入家庭的健康影响。我们的研究结果表明,从高贫困社区转移到肥胖和糖尿病的降低以及改善心理健康有关。其他现有的研究为邻里环境与死亡率与发病率之间的关联提供了证据,即使在调整个人特征后也是如此。获得健康食品,快餐连锁店,缺乏休闲设施和较高犯罪率的不良获取都与Hiher肥胖率有关。尽管如此,邻里数据的缺乏,尤其是在地理区域之间一致的邻里质量衡量标准,这限制了邻里影响研究。此外,社区不仅取决于他们的资源,而且还取决于居住在那里的人们的社会互动和活动。互联网的广泛使用和许多交易的开放记录导致了大量数据的可用性,该数据允许捕获先前隐藏的微观级别的交互。我们将构建数据算法和基础设施,以利用相对未开发,具有成本效益和普遍的社交媒体数据来开发邻里指标,例如食品主题,食物的健康性提及,运动/娱乐性的频率,体育锻炼的代谢强度和幸福水平。 Hashtaghealth的创建需要使用和完善大数据方法来执行异质,非结构化数据的数据挖掘,处理和存储。我们将为犹他州构建可测试版本的Hashtaghealth版本,然后将数据资源应用于对邻里对年轻成人肥胖的影响的检查。我在健康,因果推断和数据分析的社会决定因素方面的严格培训和以前的研究经验,为我提供了为大数据领域做出重大贡献的唯一准备,尤其是在公共卫生和社会科学的交汇处。 我的具体目的是:1) 开发邻里数据资源,Hashtaghealth,供公共卫生研究人员,2)开发大数据技术,以生成新型的邻里质量指标(例如,食物的健康性,锻炼/锻炼/娱乐和幸福水平的健康状况,频率和类型)以及3)利用Hashtaghealth和来自犹他州数据库的个人级别数据对OBES的影响。我的指导团队包括生物医学研究专家(Ken Smith博士,Jim Vanderslice),计算机科学(Feifei Li博士)和统计学(Ming Wen博士)。我的团队具有广泛的专业知识,可以帮助我获得重要的多学科技能,并成功地实施了我的研究目标。除了我的研究目的外,我的特定职业发展目的还包括以下目的:1)开发数据挖掘和数据库系统方面的专业知识,2)获得自然语言处理和机器学习方面的培训,3),3)进一步获得地理信息系统(GIS)的知识,4)在邻里效果方面发展方面的专业知识,以及发展邻里效果的专业知识,以及开发赠款和研究培训和研究的领导者,以实现未来的未来项目。从这项提案中获得的知识和经验将使我能够成功竞争R01资金,以创建国家邻里数据存储库,并调查国家对肥胖症影响的国家影响。该提案对该领域做出了重要的,相关的贡献,因为1)邻里环境越来越多地与重要的健康成果联系在一起,2)该项目通过提供新的,具有成本效益的数据资源和表征社区的方法来解决由于缺乏社区数据而导致的研究的局限性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

QUYNH NGUYEN其他文献

QUYNH NGUYEN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('QUYNH NGUYEN', 18)}}的其他基金

Neighborhood Looking Glass: 360 Degree Automated Characterization of the Built Environment for Neighborhood Effects Research
Neighborhood Looking Glass:用于邻里效应研究的建筑环境的 360 度自动表征
  • 批准号:
    9756470
  • 财政年份:
    2018
  • 资助金额:
    $ 15.57万
  • 项目类别:
Neighborhood Looking Glass: 360 Degree Automated Characterization of the Built Environment for Neighborhood Effects Research
Neighborhood Looking Glass:用于邻里效应研究的建筑环境的 360 度自动表征
  • 批准号:
    10217256
  • 财政年份:
    2018
  • 资助金额:
    $ 15.57万
  • 项目类别:
Neighborhood Looking Glass: 360 Degree Automated Characterization of the Built Environment for Neighborhood Effects Research
Neighborhood Looking Glass:用于邻里效应研究的建筑环境的 360 度自动表征
  • 批准号:
    9979947
  • 财政年份:
    2018
  • 资助金额:
    $ 15.57万
  • 项目类别:
HashtagHealth: A Social Media Big Data Resource for Neighborhood Effects Research
HashtagHealth:用于邻里效应研究的社交媒体大数据资源
  • 批准号:
    9239538
  • 财政年份:
    2014
  • 资助金额:
    $ 15.57万
  • 项目类别:

相似国自然基金

出生前后多种农药暴露波动轨迹与青春期儿童肥胖的关系:基于一项前瞻性出生队列的观察与机制研究
  • 批准号:
    82373533
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
注意缺陷多动障碍儿童青春期前执行功能发育轨迹的纵向随访研究
  • 批准号:
    82371548
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
青春期发育对青少年心理行为发展的影响及生理机制
  • 批准号:
    32300888
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
卧室夜间光暴露与遗传风险互作致儿童青春期发育提前效应及生殖内分泌干扰机制研究
  • 批准号:
    82373591
  • 批准年份:
    2023
  • 资助金额:
    47 万元
  • 项目类别:
    面上项目
E3泛素连接酶Smurf1调控FTO/PPARα介导青春期前暴露纳米塑料致小鼠精子发生障碍的机制研究
  • 批准号:
    82304179
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Childhood socioeconomic disadvantage, cumulative Adverse Childhood Experiences, and adolescent depression and anxiety symptoms
童年社会经济劣势、累积的不良童年经历以及青少年抑郁和焦虑症状
  • 批准号:
    10676396
  • 财政年份:
    2023
  • 资助金额:
    $ 15.57万
  • 项目类别:
Building Social and Structural Connections for the Prevention of OUD among Youth Experiencing Homelessness: An RCT Examining Biopsychosocial Mechanisms
建立社会和结构联系以预防无家可归青年中的 OUD:一项检验生物心理社会机制的随机对照试验
  • 批准号:
    10775030
  • 财政年份:
    2023
  • 资助金额:
    $ 15.57万
  • 项目类别:
Developing a Digital Intervention for Adolescent Nonsuicidal Self-injury
制定针对青少年非自杀性自残的数字干预措施
  • 批准号:
    10740718
  • 财政年份:
    2023
  • 资助金额:
    $ 15.57万
  • 项目类别:
Consensus Workshop to Address Kidney Health in High-Risk Neonatal Intensive Care Unit Graduates
解决高危新生儿重症监护病房毕业生肾脏健康问题的共识研讨会
  • 批准号:
    10752851
  • 财政年份:
    2023
  • 资助金额:
    $ 15.57万
  • 项目类别:
Equitable Measurement of Care Disparities and Needs in Intersex Youth/Youth with Variations in Sex Development
公平衡量双性青少年/性发育差异青少年的护理差异和需求
  • 批准号:
    10802992
  • 财政年份:
    2023
  • 资助金额:
    $ 15.57万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了