A New Paradigm for Illness Monitoring and Relapse Prevention in Schizophrenia
精神分裂症疾病监测和复发预防的新范式
基本信息
- 批准号:8743296
- 负责人:
- 金额:$ 32.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-26 至 2017-07-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAcuteAddressBehaviorBehavioralCaringChronicClinicalClinical TrialsCollaborationsCommunitiesComputer softwareComputersCoupledDataData AnalysesDetectionDevelopmentDisease remissionEarly DiagnosisElementsEnsureGoalsHealthHealth Care CostsHealthcare SystemsHomelessnessHospitalizationImprisonmentIndividualInterdisciplinary StudyInterventionLaboratoriesLeftLightLocationMachine LearningMechanicsMental DepressionMental disordersMethodsModelingMonitorMoodsNational Institute of Mental HealthNatureNotificationOutcomeOutpatientsPartial RemissionPatient Self-ReportPatientsPatternPhasePhysical activityPopulationPreventionProviderRandomizedRelapseResearchResearch InfrastructureResearch PersonnelResourcesRiskSchizophreniaScienceScientistSecureSelf ManagementSelf-Injurious BehaviorSleepSocial isolationSpeechStressSuicideSymptomsSystemTechniquesTechnologyTechnology AssessmentTestingTimeUpdateVictimizationbasecomputer generatedcomputerizedcostdisabilitydisorder later incidence preventionexperiencehelp-seeking behaviorhigh rewardhigh riskinnovationmHealthmedical complicationnovelpreventprogramspsychotic symptomspublic health relevancesensorsevere mental illnesssoftware developmenttreatment as usualtreatment effecttrendusabilityweb site
项目摘要
DESCRIPTION (provided by applicant): Schizophrenia is a severe psychiatric disorder that is associated with staggeringly high individual and societal costs. Although the illness is typically chronic, it is not static, and the majority of people with schizophrenia vacillate between full or partial remission and episodes of symptomatic relapse. Relapses increase one's risk for major problems including homelessness, incarceration, victimization, and suicide. Moreover, patients with schizophrenia who relapse are three to four times more costly than those who do not. The goal of the proposed project is to develop and evaluate a novel paradigm for illness monitoring, detection of early warning signs, and relapse prevention in schizophrenia. Our interdisciplinary team of clinical researchers and computer scientists proposes to develop a mobile system that uses smartphone-embedded sensors (i.e. microphone, accelerometer, GPS, light sensor) coupled with computerized self-reports, to track a range of behaviors (i.e. paralinguistic aspect of speech, physical activity, location, sleep, mood, psychotic symptoms) that are relevant to relapse in schizophrenia. Using machine learning techniques, the system will leverage behavioral data and patient self-reported clinical updates to generate personalized early warning models. The models will evolve with use of the system over time, focusing on variability from one's typical behavioral patterns to calibrate a unique patient relapse signature. Treatment teams will be informed about patients' clinical status via secure website. When the mobile system "flags" trends that are consistent with one's relapse signature, it will trigger patient functions and provider functions (i.e. real-time notification, prompts to initiate contact, time-sensitive treatments) to help prevent progression to full psychotic relapse. In Phase 1 of the project, we will integrate multi-modal sensor, ecological momentary assessment, and machine learning technologies into a unified smartphone system that will be tested and refined in laboratory settings. In Phase 2, we will conduct field trials with individuals with schizophrenia i real-world conditions to identify and resolve technical and mechanical problems, adapt the software, and maximize system usability. In Phase 3, we will conduct a randomized 12- month trial of the monitoring and prevention system compared to treatment as usual in 150 outpatients with schizophrenia that are at high-risk for relapse. If successful, our proposed system can be rapidly made available to a population that is in dire need of more effective resources, and can serve as a template for mobile monitoring and treatment systems for a range of clinical conditions with an episodic nature.
描述(由申请人提供):精神分裂症是一种严重的精神疾病,与极高的个人和社会成本相关。虽然这种疾病通常是慢性的,但它并不是静态的,大多数精神分裂症患者在完全或部分缓解和症状复发之间摇摆不定。旧病复发会增加出现重大问题的风险,包括无家可归、监禁、受害和自杀。此外,复发的精神分裂症患者的治疗费用比未复发的患者高出三到四倍。该项目的目标是开发和评估精神分裂症疾病监测、早期预警信号检测和预防复发的新范例。我们的跨学科临床研究人员和计算机科学家团队建议开发一种移动系统,使用智能手机嵌入式传感器(即麦克风、加速度计、GPS、光传感器)与计算机化自我报告相结合,来跟踪与精神分裂症复发相关的一系列行为(即言语的副语言方面、身体活动、位置、睡眠、情绪、精神病症状)。使用机器学习技术,该系统将利用行为数据和患者自我报告的临床更新来生成个性化的早期预警模型。随着时间的推移,这些模型将随着系统的使用而不断发展,重点关注一个人典型行为模式的变化,以校准独特的患者复发特征。治疗团队将通过安全网站了解患者的临床状况。当移动系统“标记”与患者复发特征一致的趋势时,它将触发患者功能和提供者功能(即实时通知、提示启动联系、时间敏感的治疗),以帮助防止进展为完全精神病复发。在该项目的第一阶段,我们将把多模态传感器、生态瞬时评估和机器学习技术集成到统一的智能手机系统中,并在实验室环境中进行测试和完善。在第二阶段,我们将在现实条件下对精神分裂症患者进行现场试验,以识别和解决技术和机械问题,调整软件并最大限度地提高系统可用性。在第 3 阶段,我们将对 150 名复发风险较高的精神分裂症门诊患者进行一项为期 12 个月的随机试验,对监测和预防系统与常规治疗进行比较。如果成功,我们提出的系统可以快速提供给迫切需要更有效资源的人群,并且可以作为移动监测和治疗系统的模板,用于一系列具有偶发性的临床病症。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dror Ben-Zeev其他文献
Dror Ben-Zeev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dror Ben-Zeev', 18)}}的其他基金
Combining mHealth and nurse-delivered care to improve the outcomes of people with seriousmental illness in West Africa
将移动医疗与护士提供的护理相结合,改善西非严重精神疾病患者的治疗结果
- 批准号:
10533529 - 财政年份:2022
- 资助金额:
$ 32.41万 - 项目类别:
Combining mHealth and nurse-delivered care to improve the outcomes of people with seriousmental illness in West Africa
将移动医疗与护士提供的护理相结合,改善西非严重精神疾病患者的治疗结果
- 批准号:
10676949 - 财政年份:2022
- 资助金额:
$ 32.41万 - 项目类别:
Implementing mHealth for Schizophrenia in Community Mental Health Settings
在社区心理健康环境中实施精神分裂症移动医疗
- 批准号:
10533730 - 财政年份:2019
- 资助金额:
$ 32.41万 - 项目类别:
Implementing mHealth for Schizophrenia in Community Mental Health Settings
在社区心理健康环境中实施精神分裂症移动医疗
- 批准号:
10063048 - 财政年份:2019
- 资助金额:
$ 32.41万 - 项目类别:
Implementing mHealth for Schizophrenia in Community Mental Health Settings
在社区心理健康环境中实施精神分裂症移动医疗
- 批准号:
10311085 - 财政年份:2019
- 资助金额:
$ 32.41万 - 项目类别:
Mobile RDoC: Using Smartphone Technology to Understand Auditory Verbal Hallucinations
移动 RDoC:使用智能手机技术理解听觉言语幻觉
- 批准号:
9899714 - 财政年份:2017
- 资助金额:
$ 32.41万 - 项目类别:
Mobile RDoC: Using Smartphone Technology to Understand Auditory Verbal Hallucinations
移动 RDoC:使用智能手机技术理解听觉言语幻觉
- 批准号:
9924681 - 财政年份:2017
- 资助金额:
$ 32.41万 - 项目类别:
A New Paradigm for Illness Monitoring and Relapse Prevention in Schizophrenia
精神分裂症疾病监测和复发预防的新范式
- 批准号:
8640521 - 财政年份:2013
- 资助金额:
$ 32.41万 - 项目类别:
Development of a Mobile System for Self-management of Schizophrenia (SOS)
开发精神分裂症自我管理移动系统(SOS)
- 批准号:
8488042 - 财政年份:2013
- 资助金额:
$ 32.41万 - 项目类别:
A New Paradigm for Illness Monitoring and Relapse Prevention in Schizophrenia
精神分裂症疾病监测和复发预防的新范式
- 批准号:
9119612 - 财政年份:2013
- 资助金额:
$ 32.41万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 32.41万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 32.41万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 32.41万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 32.41万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 32.41万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 32.41万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 32.41万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 32.41万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 32.41万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 32.41万 - 项目类别:
Operating Grants














{{item.name}}会员




