Quantitative MRI models of HN Cancers for Physiological Adaption of RT
用于 RT 生理适应的 HN 癌症定量 MRI 模型
基本信息
- 批准号:8672964
- 负责人:
- 金额:$ 48.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-06-04 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:Blood VolumeCharacteristicsClinicClinicalCommunitiesDataDiagnosticDiffusionDiffusion Magnetic Resonance ImagingDiffusion weighted imagingDiseaseDoseEquilibriumEventFailureFunctional ImagingFuzzy LogicGoalsHead and Neck CancerHead and Neck NeoplasmsHeterogeneityImageImage AnalysisImaging TechniquesIndividualInvestigationMagnetic Resonance ImagingMapsMetabolicMethodsMetricModelingModificationOutcomePatientsPatternPattern RecognitionPhase II Clinical TrialsPhysiologicalPredictive ValueProtocols documentationRadiationRadiation therapyRandomizedReproducibilityResistanceRoleSiteTechniquesTestingTimeTranslatingTreatment FailureWeightbaseclinical decision-makingimaging modalityimprovedmolecular imagingoutcome forecastprognosticpublic health relevanceresponsetherapy outcometooltumor
项目摘要
DESCRIPTION (provided by applicant): Although metabolic and physiological imaging have shown prognostic and predictive value for radiation therapy (RT) outcome and may serve to support therapy modification, clinical utilization is challenging due to issues such as reproducibility of physiological images, heterogeneity of the image parameters in the tumor, and lack of tools to support therapy modification. We hypothesize that, given the underlying heterogeneity of tumors and their response to treatment, physiological imaging can be best utilized for individualizing RT by robustly and quantitatively identifying subvolumes that have a better predictive value than the imaging characteristics of the tumor as a whole, and are the likely sites of local failure. These subvolumes can serve spatial guide for radiation dose redistribution such as focal boosting to improve outcomes. We have developed and investigated fuzzy logic pattern recognition techniques for identifying these subvolumes of head-and-neck (HN) cancer from heterogeneous distributions of tumor blood volume (BV) across patients and over multiple time points. Based on our findings that large poorly-perfused subvolumes of HN tumors before treatment that persist during the early course of chemo-RT have the potential to predict local failure better than the change in the mean BV in the tumor, we will further develop the subvolume definition method, extend it to diffusion- weighted (DW) MR imaging, and evaluate and validate it in a randomized phase II clinical trial of poor- prognosis HN cancers. Our aims are: (1) Develop quantitative and automated methods to extract significant subvolumes of HN tumors from dynamic contrast enhanced (DCE) and DW MRI for prediction of local and regional failure; (2) Prospectively assess variability and reproducibility of the subvolume intensity and definition extracted by our methods using test-retest data; and (3) Prospectively evaluate and validate that the method yields subvolumes predictive of local-regional failure in a randomized phase II trial of radiation dose boosting for poor-prognosis HN cancer. Impact: Unless clinics can acquire and analyze these images effectively and quantitatively, and use predictive results in an accurate fashion, the benefit of these powerful imaging techniques to make a meaningful difference in tumor RT may be completely obscured. This project strives to achieve these goals. The framework developed in the project can be translated into other body sites as well as other imaging modalities. By partnering with a commercial company, we will make this method available for the users in the community.
描述(由申请人提供):尽管代谢和生理成像已显示出对放射治疗(RT)结果的预后和预测价值,并可用于支持治疗修改,但由于生理图像的再现性、肿瘤中图像参数的异质性以及缺乏支持治疗修改的工具等问题,临床应用具有挑战性。我们假设,考虑到肿瘤的潜在异质性及其对治疗的反应,生理成像可以最好地用于个体化RT,通过稳健和定量地识别具有比肿瘤整体成像特征更好的预测价值的子体积,并且是局部失败的可能部位。这些子体积可以为辐射剂量重新分布提供空间指导,例如焦点增强以改善结果。我们已经开发并研究了模糊逻辑模式识别技术,用于从患者和多个时间点的肿瘤血容量(BV)的异质分布中识别头颈部(HN)癌的这些子体积。基于我们的发现,即在化疗-RT的早期过程中持续存在的治疗前HN肿瘤的大的灌注不良子体积具有比肿瘤中平均BV的变化更好地预测局部失败的潜力,我们将进一步开发子体积定义方法,将其扩展到扩散加权(DW)MR成像,并在预后不良的HN癌症的随机II期临床试验中对其进行评估和验证。我们的目标是:(1)开发定量和自动化的方法,从动态对比增强(DCE)和DW MRI中提取HN肿瘤的重要子体积,用于预测局部和区域失败;(2)使用重测数据,评估我们的方法提取的子体积强度和定义的可变性和可重复性;以及(3)Prosthesis评估并验证该方法在用于预后不良的HN癌症的放射剂量增强的随机II期试验中产生预测局部区域失败的子体积。影响:除非临床能够有效地和定量地获取和分析这些图像,并以准确的方式使用预测结果,否则这些强大的成像技术在肿瘤RT中产生有意义的差异的益处可能会完全模糊。本项目旨在实现这些目标。该项目中开发的框架可以转换为其他身体部位以及其他成像模式。通过与一家商业公司合作,我们将为社区中的用户提供这种方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yue Cao其他文献
Yue Cao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yue Cao', 18)}}的其他基金
A clinical tool for automated detection and delineation of intracranial metastases from MRI
用于通过 MRI 自动检测和描绘颅内转移瘤的临床工具
- 批准号:
10683991 - 财政年份:2021
- 资助金额:
$ 48.97万 - 项目类别:
A clinical tool for automated detection and delineation of intracranial metastases from MRI
用于通过 MRI 自动检测和描绘颅内转移瘤的临床工具
- 批准号:
10275302 - 财政年份:2021
- 资助金额:
$ 48.97万 - 项目类别:
A clinical tool for automated detection and delineation of intracranial metastases from MRI
用于通过 MRI 自动检测和描绘颅内转移瘤的临床工具
- 批准号:
10454405 - 财政年份:2021
- 资助金额:
$ 48.97万 - 项目类别:
Functional imaging-directed adaptive therapy of head and neck cancer
功能成像引导的头颈癌适应性治疗
- 批准号:
9212122 - 财政年份:2015
- 资助金额:
$ 48.97万 - 项目类别:
Quantitative MRI models of HN Cancers for Physiological Adaption of RT
用于 RT 生理适应的 HN 癌症定量 MRI 模型
- 批准号:
9070056 - 财政年份:2014
- 资助金额:
$ 48.97万 - 项目类别:
Quantitative MRI models of HN Cancers for Physiological Adaption of RT
用于 RT 生理适应的 HN 癌症定量 MRI 模型
- 批准号:
9269165 - 财政年份:2014
- 资助金额:
$ 48.97万 - 项目类别:
相似海外基金
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
- 批准号:
2415119 - 财政年份:2024
- 资助金额:
$ 48.97万 - 项目类别:
Continuing Grant
The effects of human lower limb immobilization on regenerative skeletal muscle stem cell characteristics in vitro
人体下肢固定对体外再生骨骼肌干细胞特性的影响
- 批准号:
MR/Y033787/1 - 财政年份:2024
- 资助金额:
$ 48.97万 - 项目类别:
Research Grant
Socio-Emotional Characteristics in Early Childhood and Offending Behaviour in Adolescence
幼儿期的社会情感特征和青春期的犯罪行为
- 批准号:
ES/Z502601/1 - 财政年份:2024
- 资助金额:
$ 48.97万 - 项目类别:
Fellowship
An Atomic Level Understanding of Optimal Characteristics of TiO2 Protection Layers and Photoelectrode/TiO2 Interfaces for Efficient and Stable Solar Fuel Production
从原子水平了解 TiO2 保护层和光电极/TiO2 界面的最佳特性,以实现高效、稳定的太阳能燃料生产
- 批准号:
2350199 - 财政年份:2024
- 资助金额:
$ 48.97万 - 项目类别:
Continuing Grant
Research on Physical Agents that Reduce Isolation and Loneliness According to the Individual Characteristics of the Elderly
根据老年人个体特征减少孤立感和孤独感的物理疗法研究
- 批准号:
23H00484 - 财政年份:2023
- 资助金额:
$ 48.97万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Assessment of the impact of catchment geology and groundwater discharge characteristics on river water quality and red tide formation in estuarine areas
流域地质和地下水排放特征对河口地区河流水质和赤潮形成的影响评估
- 批准号:
23H00724 - 财政年份:2023
- 资助金额:
$ 48.97万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Functional evaluation of spatio-temporal characteristics of electrical retinal stimulation by temporal interference
时间干扰视网膜电刺激时空特征的功能评估
- 批准号:
23K09025 - 财政年份:2023
- 资助金额:
$ 48.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Advancement in prediction of hydrodynamic characteristics under the free-surface and discharge evaluation by using the turbulence information measured by live camera images
利用实时相机图像测量的湍流信息预测自由表面下的水动力特性和流量评估的进展
- 批准号:
23K04043 - 财政年份:2023
- 资助金额:
$ 48.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Vernacular Stone Masonry Houses of Bhutan: A study on the Architectural Characteristics and the Suitable Approach for Protection as Cultural Heritage
不丹乡土石砌房屋:建筑特征和文化遗产保护的适当方法研究
- 批准号:
23H01596 - 财政年份:2023
- 资助金额:
$ 48.97万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
For coexistence with Echinococcus - Re-evaluation of biological characteristics of Hokkaido-prevalent population based on the new findings
与棘球蚴共存 - 根据新发现重新评估北海道流行人群的生物学特性
- 批准号:
23H02369 - 财政年份:2023
- 资助金额:
$ 48.97万 - 项目类别:
Grant-in-Aid for Scientific Research (B)