Novel Engineered Particle Platform for Endothelium Regeneration
用于内皮再生的新型工程颗粒平台
基本信息
- 批准号:8632706
- 负责人:
- 金额:$ 35.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:AdherenceAdhesionsAngioplastyAnimal ModelAreaArteriesBindingBiocompatibleBiocompatible MaterialsBlood CirculationBlood PlateletsBlood VesselsBlood coagulationCD34 AntigensCardiovascular DiseasesCardiovascular systemCause of DeathCell MaturationCell ProliferationCell-Matrix JunctionCellsDepositionDevelopmentEffectivenessEndothelial CellsEndotheliumEngineeringEvaluationFamilyFamily suidaeGoalsGrowth FactorHealedIn SituIn VitroInflammationInjectableInjuryInterventionInvestigationLigandsModalityNanotechnologyNatural regenerationNatureObstructionOutcomeP-SelectinPeptidesPhysiologicalPlayPolyestersPolymersPopulationPreventionProceduresPropertyRattusReagentRecruitment ActivityResearchResearch Project GrantsRight-OnRoleSiteSmooth Muscle MyocytesSolutionsStem cellsSurfaceSystemTechnologyTestingTherapeuticThrombosisTissue EngineeringToxic effectUrethaneVWF geneVascular DiseasesVascular EndotheliumWorkbasebiomaterial compatibilitycardiovascular disorder therapycell motilityeconomic impacthealingimprovedin vivoin vivo regenerationinjuredinnovationmimicrynanoparticlenoveloverexpressionparticlepercutaneous coronary interventionpreventpublic health relevancerepairedrestenosisscaffoldvascular tissue engineering
项目摘要
Although percutaneous coronary intervention (PCI) modalities such as angioplasty are often used as the
standard procedure for treatment of cardiovascular disease, the number one cause of death in the U.S., they
have many limitations including late restenosis and thrombosis. Delayed endothelium regeneration after
vascular injury by PCI has been indicated as a major cause for these drawbacks, especially late thrombosis.
Indeed, endothelium layer serves as a nature barrier for the artery and plays an important role in the
prevention of platelet adhesion and smooth muscle cell proliferation and migration. Thus our long-term goal is
to engineer novel multifunctional targeting nanoparticles (MTNs) that can bind specifically onto the injured
arterial site to serve as a temporary barrier to prevent platelet adhesion and smooth muscle cell migration while
recruiting stem cells such as endothelial progenitor cells (EPCs) for enhancing endothelium regeneration. The
novel engineered MTNs will prevent platelet adhesion and encourage rapid endothelium healing at the injured
site, allowing the potential of re-endothelialization in situ.
To reach our goal, three specific aims are proposed: (1) To synthesize and characterize novel
biodegradable, biocompatible, and hemo-compatible biomaterials including urethane-doped polyesters (UPEs)
for vascular tissue engineering applications. (2) To formulate MTNs, which are made of UPEs, loaded with
therapeutic reagents including growth factors, and conjugated with both the injured arterial wall targeting
ligands and the EPC binding molecules. Various properties of MTNs including the effects of MTNs on platelet
deposition and endothelium regeneration in vitro will be further investigated. (3) To determine the effectiveness
of novel MTNs in vivo for endothelium regeneration in situ following PCI injury using animal models.
There are several innovative aspects associated with this research. Our engineered MTNs, based on
recent advances in both tissue engineering and nanotechnology, provide a unique strategy to promote
endothelium regeneration and hence to stimulate vascular healing after PCI while preventing platelet adhesion.
Another novel aspect of our research is that the engineered MTNs utilize the combination of (1) targeting
injured arteries, (2) reducing platelet adhesion by serving as a temporary barrier, (3) capturing EPC at the
targeted sites, which indirectly reduce platelet deposition on the damaged areas, and (4) promoting
endothelium regeneration using engineered tissue nanoscaffolds. The proposed MTNs will bring in a significant
improvement in the treatment of PCI-associated vascular injury and should generate highly scientific and
economic impacts in cardiovascular disease therapy.
尽管经皮冠状动脉介入治疗(PCI)方式如血管成形术通常被用作治疗冠状动脉疾病的方法。
治疗心血管疾病的标准程序,心血管疾病是美国的头号死因,他们
具有许多局限性,包括晚期再狭窄和血栓形成。延迟内皮再生
经皮冠状动脉介入治疗引起的血管损伤被认为是这些缺点,尤其是晚期血栓形成的主要原因。
事实上,内皮层作为动脉的天然屏障,在动脉粥样硬化中起着重要作用。
防止血小板粘附和平滑肌细胞增殖和迁移。我们的长期目标是
设计新型多功能靶向纳米颗粒(MTN),
动脉部位作为临时屏障,以防止血小板粘附和平滑肌细胞迁移,
募集干细胞如内皮祖细胞(EPCs)以增强内皮再生。的
新的工程MTN将防止血小板粘附并促进损伤处的内皮快速愈合
部位,允许原位再内皮化的潜力。
为了达到我们的目标,提出了三个具体的目标:(1)合成和表征新的
生物可降解、生物相容性和血液相容性生物材料,包括掺杂染料的聚酯(UPE)
用于血管组织工程应用。(2)为了制定由UPE制成的MTN,
治疗试剂包括生长因子,并与损伤的动脉壁靶向结合
配体和EPC结合分子。MTN的各种性质,包括MTN对血小板的影响
将进一步研究体外沉积和内皮再生。(3)为了确定有效性
使用动物模型,在PCI损伤后,使用新型MTN进行体内原位内皮再生。
这项研究有几个创新的方面。我们的工程MTN,基于
组织工程和纳米技术的最新进展,提供了一个独特的战略,以促进
内皮再生,并因此刺激PCI后的血管愈合,同时防止血小板粘附。
我们研究的另一个新方面是,工程MTN利用(1)靶向
损伤的动脉,(2)通过作为临时屏障减少血小板粘附,(3)在血管壁捕获EPC,
靶向部位,其间接减少受损区域上的血小板沉积,以及(4)促进
使用工程组织纳米支架进行内皮再生。建议的中期票据将带来大量
改善PCI相关血管损伤的治疗,并应产生高度科学和
心血管疾病治疗的经济影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kytai Truong Nguyen其他文献
Shear Stress Reduces Protease Activated Receptor-1 Expression in Human Endothelial Cells
- DOI:
10.1114/1.1349700 - 发表时间:
2001-02-01 - 期刊:
- 影响因子:5.400
- 作者:
Kytai Truong Nguyen;Suzanne G. Eskin;Cam Patterson;Marschall S. Runge;Larry V. McIntire - 通讯作者:
Larry V. McIntire
Lung Cancer Targeted Chemoradiotherapy via Dual-Stimuli Responsive Biodegradable Core-Shell Nanoparticles.
- DOI:
10.3390/pharmaceutics14081525 - 发表时间:
2022-07-22 - 期刊:
- 影响因子:5.4
- 作者:
Iyer, Roshni;Ramachandramoorthy, Harish;Trinh Nguyen;Xu, Cancan;Fu, Huikang;Kotadia, Tanviben;Chen, Benjamin;Hong, Yi;Saha, Debabrata;Kytai Truong Nguyen - 通讯作者:
Kytai Truong Nguyen
Kytai Truong Nguyen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kytai Truong Nguyen', 18)}}的其他基金
Synergistic Upregulation of EpoR /RopE NPs for Enhancing Effective Angiogenesis to treat PAD
EpoR /RopE NP 的协同上调可增强有效的血管生成以治疗 PAD
- 批准号:
10113347 - 财政年份:2021
- 资助金额:
$ 35.38万 - 项目类别:
Interdisciplinary Training in Nanotechnology for Cardiovascular and Lung Diseases in North Texas
北德克萨斯州心血管和肺部疾病纳米技术跨学科培训
- 批准号:
9355415 - 财政年份:2017
- 资助金额:
$ 35.38万 - 项目类别:
Interdisciplinary Training in Nanotechnology for Cardiovascular and Lung Diseases in North Texas
北德克萨斯州心血管和肺部疾病纳米技术跨学科培训
- 批准号:
10206233 - 财政年份:2017
- 资助金额:
$ 35.38万 - 项目类别:
Novel Engineered Particle Platform for Endothelium Regeneration
用于内皮再生的新型工程颗粒平台
- 批准号:
9198993 - 财政年份:2014
- 资助金额:
$ 35.38万 - 项目类别:
Novel Engineered Particle Platform for Endothelium Regeneration
用于内皮再生的新型工程颗粒平台
- 批准号:
8788441 - 财政年份:2014
- 资助金额:
$ 35.38万 - 项目类别:
Nanoparticles for targeting drug delivery to the injured vascular wall
用于将药物递送至受损血管壁的纳米颗粒
- 批准号:
7837498 - 财政年份:2009
- 资助金额:
$ 35.38万 - 项目类别:
Nanoparticles for targeting drug delivery to the injured vascular wall
用于将药物递送至受损血管壁的纳米颗粒
- 批准号:
7569399 - 财政年份:2008
- 资助金额:
$ 35.38万 - 项目类别:
Nanoparticles for targeting drug delivery to the injured vascular wall
用于将药物递送至受损血管壁的纳米颗粒
- 批准号:
7354589 - 财政年份:2008
- 资助金额:
$ 35.38万 - 项目类别:
相似海外基金
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y004841/1 - 财政年份:2024
- 资助金额:
$ 35.38万 - 项目类别:
Research Grant
Defining a role for non-canonical mTORC1 activity at focal adhesions
定义非典型 mTORC1 活性在粘着斑中的作用
- 批准号:
BB/Y001427/1 - 财政年份:2024
- 资助金额:
$ 35.38万 - 项目类别:
Research Grant
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y005414/1 - 财政年份:2024
- 资助金额:
$ 35.38万 - 项目类别:
Research Grant
Development of a single-use, ready-to-use, sterile, dual chamber, dual syringe sprayable hydrogel to prevent postsurgical cardiac adhesions.
开发一次性、即用型、无菌、双室、双注射器可喷雾水凝胶,以防止术后心脏粘连。
- 批准号:
10669829 - 财政年份:2023
- 资助金额:
$ 35.38万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10587090 - 财政年份:2023
- 资助金额:
$ 35.38万 - 项目类别:
Improving Maternal Outcomes of Cesarean Delivery with the Prevention of Postoperative Adhesions
通过预防术后粘连改善剖宫产的产妇结局
- 批准号:
10821599 - 财政年份:2023
- 资助金额:
$ 35.38万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10841832 - 财政年份:2023
- 资助金额:
$ 35.38万 - 项目类别:
Prevention of Intraabdominal Adhesions via Release of Novel Anti-Inflammatory from Surface Eroding Polymer Solid Barrier
通过从表面侵蚀聚合物固体屏障中释放新型抗炎剂来预防腹内粘连
- 批准号:
10532480 - 财政年份:2022
- 资助金额:
$ 35.38万 - 项目类别:
I-Corps: A Sprayable Tissue-Binding Hydrogel to Prevent Postsurgical Cardiac Adhesions
I-Corps:一种可喷雾的组织结合水凝胶,可防止术后心脏粘连
- 批准号:
10741261 - 财政年份:2022
- 资助金额:
$ 35.38万 - 项目类别:
Sprayable Polymer Blends for Prevention of Site Specific Surgical Adhesions
用于预防特定部位手术粘连的可喷涂聚合物共混物
- 批准号:
10674894 - 财政年份:2022
- 资助金额:
$ 35.38万 - 项目类别:














{{item.name}}会员




