Novel Engineered Particle Platform for Endothelium Regeneration
用于内皮再生的新型工程颗粒平台
基本信息
- 批准号:8788441
- 负责人:
- 金额:$ 36.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:AdherenceAdhesionsAngioplastyAnimal ModelAreaArteriesBindingBiocompatibleBiocompatible MaterialsBlood CirculationBlood PlateletsBlood VesselsBlood coagulationCD34 AntigensCardiovascular DiseasesCardiovascular systemCause of DeathCell MaturationCell ProliferationCell-Matrix JunctionCellsDepositionDevelopmentEffectivenessEndothelial CellsEndotheliumEngineeringEvaluationFamilyFamily suidaeGoalsGrowth FactorHealedHealthIn SituIn VitroInflammationInjectableInjuryInterventionInvestigationLigandsModalityNanotechnologyNatural regenerationNatureObstructionOutcomeP-SelectinPeptidesPhysiologicalPlayPolyestersPolymersPopulationPreventionProceduresPropertyRattusReagentRecruitment ActivityResearchResearch Project GrantsRoleSiteSmooth Muscle MyocytesSolutionsStem cellsSurfaceSystemTechnologyTestingTherapeuticThrombosisTissue EngineeringToxic effectUrethaneVWF geneVascular DiseasesVascular EndotheliumWorkbasebiomaterial compatibilitycardiovascular disorder therapycell motilityeconomic impacthealingimprovedin vivoin vivo regenerationinjuredinnovationmimicrynanoparticlenoveloverexpressionparticlepercutaneous coronary interventionpreventrepairedrestenosisscaffoldvascular tissue engineering
项目摘要
DESCRIPTION (provided by applicant): Although percutaneous coronary intervention (PCI) modalities such as angioplasty are often used as the standard procedure for treatment of cardiovascular disease, the number one cause of death in the U.S., they have many limitations including late restenosis and thrombosis. Delayed endothelium regeneration after vascular injury by PCI has been indicated as a major cause for these drawbacks, especially late thrombosis. Indeed, endothelium layer serves as a nature barrier for the artery and plays an important role in the prevention of platelet adhesion and smooth muscle cell proliferation and migration. Thus our long-term goal is to engineer novel multifunctional targeting nanoparticles (MTNs) that can bind specifically onto the injured arterial site to serve as a temporary barrier to
prevent platelet adhesion and smooth muscle cell migration while recruiting stem cells such as endothelial progenitor cells (EPCs) for enhancing endothelium regeneration. The novel engineered MTNs will prevent platelet adhesion and encourage rapid endothelium healing at the injured site, allowing the potential of re-endothelialization in situ. To reach our goal, three specific aims are proposed: (1) To synthesize and characterize novel biodegradable, biocompatible, and hemo-compatible biomaterials including urethane-doped polyesters (UPEs) for vascular tissue engineering applications. (2) To formulate MTNs, which are made of UPEs, loaded with therapeutic reagents including growth factors, and conjugated with both the injured arterial wall targeting ligands and the EPC binding molecules. Various properties of MTNs including the effects of MTNs on platelet deposition and endothelium regeneration in vitro will be further investigated. (3) To determine the effectiveness of novel MTNs in vivo for endothelium regeneration in situ following PCI injury using animal models. There are several innovative aspects associated with this research. Our engineered MTNs, based on recent advances in both tissue engineering and nanotechnology, provide a unique strategy to promote endothelium regeneration and hence to stimulate vascular healing after PCI while preventing platelet adhesion. Another novel aspect of our research is that the engineered MTNs utilize the combination of (1) targeting injured arteries, (2) reducing platelet adhesion by serving as a temporary barrier, (3) capturing EPC at the targeted sites, which indirectly reduce platelet deposition on the damaged areas, and (4) promoting endothelium regeneration using engineered tissue nanoscaffolds. The proposed MTNs will bring in a significant improvement in the treatment of PCI-associated vascular injury and should generate highly scientific and economic impacts in cardiovascular disease therapy.
描述(由申请人提供):尽管经皮冠状动脉介入(PCI)方式(如血管成形术)通常用作治疗心血管疾病的标准程序,心血管疾病是美国的头号死因,但是它们具有许多局限性,包括晚期再狭窄和血栓形成。经皮冠状动脉介入治疗血管损伤后内皮细胞再生延迟被认为是这些缺陷的主要原因,尤其是晚期血栓形成。事实上,内皮层作为动脉的天然屏障,在防止血小板粘附和平滑肌细胞增殖和迁移中起重要作用。因此,我们的长期目标是设计新的多功能靶向纳米颗粒(MTN),可以特异性结合到受损的动脉部位,作为临时屏障,
防止血小板粘附和平滑肌细胞迁移,同时募集干细胞如内皮祖细胞(EPCs)以增强内皮再生。新的工程MTN将防止血小板粘附并促进损伤部位的快速内皮愈合,从而允许原位再内皮化的潜力。 为了达到我们的目标,提出了三个具体的目标:(1)合成和表征新型生物降解,生物相容性,血液相容性生物材料,包括掺杂聚酯(UPE)的血管组织工程应用。(2)为了配制MTN,其由UPE制成,负载有包括生长因子的治疗试剂,并与损伤的动脉壁靶向配体和EPC结合分子缀合。MTN的各种性质,包括MTN对血小板沉积和内皮再生的影响,将在体外进行进一步研究。(3)使用动物模型确定新型MTN在体内对PCI损伤后原位内皮再生的有效性。 这项研究有几个创新的方面。我们的工程MTN,基于组织工程和纳米技术的最新进展,提供了一种独特的策略,以促进内皮再生,从而刺激PCI后的血管愈合,同时防止血小板粘附。我们研究的另一个新方面是工程化MTN利用以下组合:(1)靶向受损动脉,(2)通过充当临时屏障减少血小板粘附,(3)在靶向部位捕获EPC,间接减少受损区域的血小板沉积,以及(4)使用工程化组织纳米支架促进内皮再生。拟议的MTN将带来PCI相关血管损伤治疗的显着改善,并应在心血管疾病治疗中产生高度的科学和经济影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kytai Truong Nguyen其他文献
Shear Stress Reduces Protease Activated Receptor-1 Expression in Human Endothelial Cells
- DOI:
10.1114/1.1349700 - 发表时间:
2001-02-01 - 期刊:
- 影响因子:5.400
- 作者:
Kytai Truong Nguyen;Suzanne G. Eskin;Cam Patterson;Marschall S. Runge;Larry V. McIntire - 通讯作者:
Larry V. McIntire
Lung Cancer Targeted Chemoradiotherapy via Dual-Stimuli Responsive Biodegradable Core-Shell Nanoparticles.
- DOI:
10.3390/pharmaceutics14081525 - 发表时间:
2022-07-22 - 期刊:
- 影响因子:5.4
- 作者:
Iyer, Roshni;Ramachandramoorthy, Harish;Trinh Nguyen;Xu, Cancan;Fu, Huikang;Kotadia, Tanviben;Chen, Benjamin;Hong, Yi;Saha, Debabrata;Kytai Truong Nguyen - 通讯作者:
Kytai Truong Nguyen
Kytai Truong Nguyen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kytai Truong Nguyen', 18)}}的其他基金
Synergistic Upregulation of EpoR /RopE NPs for Enhancing Effective Angiogenesis to treat PAD
EpoR /RopE NP 的协同上调可增强有效的血管生成以治疗 PAD
- 批准号:
10113347 - 财政年份:2021
- 资助金额:
$ 36.59万 - 项目类别:
Interdisciplinary Training in Nanotechnology for Cardiovascular and Lung Diseases in North Texas
北德克萨斯州心血管和肺部疾病纳米技术跨学科培训
- 批准号:
9355415 - 财政年份:2017
- 资助金额:
$ 36.59万 - 项目类别:
Interdisciplinary Training in Nanotechnology for Cardiovascular and Lung Diseases in North Texas
北德克萨斯州心血管和肺部疾病纳米技术跨学科培训
- 批准号:
10206233 - 财政年份:2017
- 资助金额:
$ 36.59万 - 项目类别:
Novel Engineered Particle Platform for Endothelium Regeneration
用于内皮再生的新型工程颗粒平台
- 批准号:
9198993 - 财政年份:2014
- 资助金额:
$ 36.59万 - 项目类别:
Novel Engineered Particle Platform for Endothelium Regeneration
用于内皮再生的新型工程颗粒平台
- 批准号:
8632706 - 财政年份:2014
- 资助金额:
$ 36.59万 - 项目类别:
Nanoparticles for targeting drug delivery to the injured vascular wall
用于将药物递送至受损血管壁的纳米颗粒
- 批准号:
7837498 - 财政年份:2009
- 资助金额:
$ 36.59万 - 项目类别:
Nanoparticles for targeting drug delivery to the injured vascular wall
用于将药物递送至受损血管壁的纳米颗粒
- 批准号:
7569399 - 财政年份:2008
- 资助金额:
$ 36.59万 - 项目类别:
Nanoparticles for targeting drug delivery to the injured vascular wall
用于将药物递送至受损血管壁的纳米颗粒
- 批准号:
7354589 - 财政年份:2008
- 资助金额:
$ 36.59万 - 项目类别:
相似海外基金
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y004841/1 - 财政年份:2024
- 资助金额:
$ 36.59万 - 项目类别:
Research Grant
Defining a role for non-canonical mTORC1 activity at focal adhesions
定义非典型 mTORC1 活性在粘着斑中的作用
- 批准号:
BB/Y001427/1 - 财政年份:2024
- 资助金额:
$ 36.59万 - 项目类别:
Research Grant
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y005414/1 - 财政年份:2024
- 资助金额:
$ 36.59万 - 项目类别:
Research Grant
Development of a single-use, ready-to-use, sterile, dual chamber, dual syringe sprayable hydrogel to prevent postsurgical cardiac adhesions.
开发一次性、即用型、无菌、双室、双注射器可喷雾水凝胶,以防止术后心脏粘连。
- 批准号:
10669829 - 财政年份:2023
- 资助金额:
$ 36.59万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10587090 - 财政年份:2023
- 资助金额:
$ 36.59万 - 项目类别:
Improving Maternal Outcomes of Cesarean Delivery with the Prevention of Postoperative Adhesions
通过预防术后粘连改善剖宫产的产妇结局
- 批准号:
10821599 - 财政年份:2023
- 资助金额:
$ 36.59万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10841832 - 财政年份:2023
- 资助金额:
$ 36.59万 - 项目类别:
Prevention of Intraabdominal Adhesions via Release of Novel Anti-Inflammatory from Surface Eroding Polymer Solid Barrier
通过从表面侵蚀聚合物固体屏障中释放新型抗炎剂来预防腹内粘连
- 批准号:
10532480 - 财政年份:2022
- 资助金额:
$ 36.59万 - 项目类别:
I-Corps: A Sprayable Tissue-Binding Hydrogel to Prevent Postsurgical Cardiac Adhesions
I-Corps:一种可喷雾的组织结合水凝胶,可防止术后心脏粘连
- 批准号:
10741261 - 财政年份:2022
- 资助金额:
$ 36.59万 - 项目类别:
Sprayable Polymer Blends for Prevention of Site Specific Surgical Adhesions
用于预防特定部位手术粘连的可喷涂聚合物共混物
- 批准号:
10674894 - 财政年份:2022
- 资助金额:
$ 36.59万 - 项目类别: