DNA Polymerase with Single-Molecule Resolution: Activity, Inhibition, and Drug Re
单分子分辨率的 DNA 聚合酶:活性、抑制和药物研究
基本信息
- 批准号:8722576
- 负责人:
- 金额:$ 27.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2017-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAntibioticsAntineoplastic AgentsArchitectureBacteriaBiologyBiotechnologyCancerousCarbonCarbon NanotubesCatalysisCellsDNADNA Polymerase InhibitorDNA-Directed DNA PolymeraseDataDevelopmentDiseaseDissectionDrug resistanceEffectivenessElectronicsEnzyme KineticsEnzymesEvolutionEyeFluorescence Resonance Energy TransferFoundationsFutureGoalsHourHuman VirusIndividualIndustryKineticsMalignant NeoplasmsMethodsModificationMonitorMutagenesisMutationPharmaceutical PreparationsPolymeraseProteinsPublishingRNA-Directed DNA PolymeraseReagentResearchResolutionRetroviridaeSpecificitySpeedStructureTechniquesTechnologyTherapeuticTherapeutic StudiesTimeTransistorsVariantViralVirusWorkbasecancer celldesigndrug discoveryenzyme mechanismhuman DNAimprovedinhibitor/antagonistinsightleukemiamicroorganismmultidrug resistance inhibition therapynanoscalenovelnovel strategiespathogenphosphodiesterpolymerizationprogramspublic health relevanceresearch studyresponsesingle moleculetherapeutic targettool
项目摘要
DESCRIPTION (provided by applicant): Viruses, cancer cells, and other pathogens rely on DNA polymerization to divide and propagate. More benignly, control over DNA polymerization helped establish and remains central to the biotechnology industry. The first goal of the proposed research is the development of nanoscale electronic circuits with single DNA polymerase molecules wired into a carbon nanotube-based field effect transistor. This architecture provides an exquisitely sensitive method for uncovering the kinetics, dynamics and individual steps required for enzymatic catalysis. The long-term goal of this research is to apply DNA polymerase nanocircuits to examine the enzyme's mechanism along with inventing new methods to investigate drug discovery and drug resistance. The experiments proposed here apply a new tool for single-molecule studies to focus on DNA polymerase, a long-studied enzyme with an extensive toolbox of approaches and reagents for its study. Single molecule studies of DNA polymerase using FRET also provide a firm foundation for the proposed experiments. Tethering individual molecules of DNA polymerase to carbon-based nanocircuits allows observation of the enzyme catalyzing phosphodiester bond formation with unprecedented time resolution (single microseconds) and duration (up to hours). Unexplored with the precision of single molecule studies, mutations to DNA polymerase conferring drug resistance have been identified for both anti-cancer and anti-viral treatments. Understanding how such mutations allow the enzyme to avoid inhibition, yet remain functional, could guide the development of more effective anti-cancer and anti-viral compounds.
描述(由申请人提供):病毒、癌细胞和其他病原体依赖于DNA聚合来分裂和繁殖。更有利的是,对DNA聚合的控制帮助建立了生物技术产业,并一直是该产业的核心。这项研究的第一个目标是开发纳米级电子电路,将单个DNA聚合酶分子连接到基于碳纳米管的场效应晶体管中。这种结构提供了一种非常灵敏的方法,用于揭示酶催化所需的动力学、动力学和各个步骤。这项研究的长期目标是应用DNA聚合酶纳米电路来研究酶的机制沿着发明新的方法来研究药物发现和耐药性。 这里提出的实验应用了一种新的单分子研究工具,专注于DNA聚合酶,这是一种长期研究的酶,具有广泛的研究方法和试剂工具箱。利用FRET对DNA聚合酶的单分子研究也为所提出的实验提供了坚实的基础。将DNA聚合酶的单个分子拴在碳基纳米电路上,可以以前所未有的时间分辨率(单微秒)和持续时间(长达数小时)观察催化磷酸二酯键形成的酶。未经探索的单分子研究的精度,突变的DNA聚合酶赋予耐药性已被确定为抗癌和抗病毒治疗。了解这些突变如何使酶避免抑制,但仍保持功能,可以指导更有效的抗癌和抗病毒化合物的开发。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PHILIP COLLINS其他文献
PHILIP COLLINS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PHILIP COLLINS', 18)}}的其他基金
DNA Polymerase with Single-Molecule Resolution: Activity, Inhibition, and Drug Re
单分子分辨率的 DNA 聚合酶:活性、抑制和药物研究
- 批准号:
8537618 - 财政年份:2013
- 资助金额:
$ 27.91万 - 项目类别:
相似海外基金
Can antibiotics disrupt biogeochemical nitrogen cycling in the coastal ocean?
抗生素会破坏沿海海洋的生物地球化学氮循环吗?
- 批准号:
2902098 - 财政年份:2024
- 资助金额:
$ 27.91万 - 项目类别:
Studentship
The role of RNA repair in bacterial responses to translation-inhibiting antibiotics
RNA修复在细菌对翻译抑制抗生素的反应中的作用
- 批准号:
BB/Y004035/1 - 财政年份:2024
- 资助金额:
$ 27.91万 - 项目类别:
Research Grant
Metallo-Peptides: Arming Cyclic Peptide Antibiotics with New Weapons to Combat Antimicrobial Resistance
金属肽:用新武器武装环肽抗生素以对抗抗菌素耐药性
- 批准号:
EP/Z533026/1 - 财政年份:2024
- 资助金额:
$ 27.91万 - 项目类别:
Research Grant
Towards the sustainable discovery and development of new antibiotics
迈向新抗生素的可持续发现和开发
- 批准号:
FT230100468 - 财政年份:2024
- 资助金额:
$ 27.91万 - 项目类别:
ARC Future Fellowships
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
- 批准号:
EP/Y023528/1 - 财政年份:2024
- 资助金额:
$ 27.91万 - 项目类别:
Research Grant
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
- 批准号:
BB/Y007611/1 - 财政年份:2024
- 资助金额:
$ 27.91万 - 项目类别:
Research Grant
The disulfide bond as a chemical tool in cyclic peptide antibiotics: engineering disulfide polymyxins and murepavadin
二硫键作为环肽抗生素的化学工具:工程化二硫多粘菌素和 murepavadin
- 批准号:
MR/Y033809/1 - 财政年份:2024
- 资助金额:
$ 27.91万 - 项目类别:
Research Grant
Role of phenotypic heterogeneity in mycobacterial persistence to antibiotics: Prospects for more effective treatment regimens
表型异质性在分枝杆菌对抗生素持久性中的作用:更有效治疗方案的前景
- 批准号:
494853 - 财政年份:2023
- 资助金额:
$ 27.91万 - 项目类别:
Operating Grants
Imbalance between cell biomass production and envelope biosynthesis underpins the bactericidal activity of cell wall -targeting antibiotics
细胞生物量产生和包膜生物合成之间的不平衡是细胞壁靶向抗生素杀菌活性的基础
- 批准号:
2884862 - 财政年份:2023
- 资助金额:
$ 27.91万 - 项目类别:
Studentship
Narrow spectrum antibiotics for the prevention and treatment of soft-rot plant disease
防治植物软腐病的窄谱抗生素
- 批准号:
2904356 - 财政年份:2023
- 资助金额:
$ 27.91万 - 项目类别:
Studentship