Transcription engineering for biosensor-based screening of metagenomic libraries
基于生物传感器的宏基因组文库筛选的转录工程
基本信息
- 批准号:8783233
- 负责人:
- 金额:$ 5.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-30 至 2016-09-29
- 项目状态:已结题
- 来源:
- 关键词:AddressAntibioticsAreaBacillus subtilisBacteriaBinding SitesBiochemicalBiosensorButanolsCarcinogensCellsChemicalsCollectionCommunitiesDNA-Directed RNA PolymeraseDiseaseDistantDrug Metabolic DetoxicationEngineeringEnzymesEscherichia coliFlow CytometryFluorescenceFluorescence-Activated Cell SortingGene ExpressionGenesGeneticGenetic TranscriptionGenomeGenome engineeringGenomic DNAGenomicsGenotypeGreen Fluorescent ProteinsHealthHigh-Throughput Nucleotide SequencingHousingHumanHuman bodyLaboratoriesLactobacillus plantarumLeadLibrariesLifeLinkMeasuresMetagenomicsMetalsMethodsMicrobeMicrobiologyNational Research Service AwardsNatureNutrientOrganismPhenotypePlasmidsPopulationProductionProkaryotic CellsReporterReporter GenesResistanceResourcesRoleSigma FactorSoilSolutionsSorting - Cell MovementSystemTechnologyTestingTimeToxinTranscription CoactivatorVitaminsWorkbaseextracellulargenetic elementgut microbiotahigh throughput screeningimprovedinterestmetagenomemicrobialmicrobiomenovelpromoterpublic health relevancescreeningsmall moleculevector
项目摘要
DESCRIPTION (provided by applicant): Effective screening of metagenomic libraries will enable the exploration of the great diversity of microbes in nature that are responsible for many interesting and valuable functions necessary for human life. For example, in the human gut, the bacterial community detoxifies harmful chemicals, synthesizes vitamins, and helps digest nutrients that the human body cannot digest by itself, among other vital functions. Unfortunately, the vast majority of bacteria cannot be cultured in a laboratory, so the genetic basis of the biocatalytic activity often goes undiscovered. The microbiology workhorse organism E. coli can house genetic collections of these bacterial communities' genomic DNA (known as metagenomic libraries). Screening of metagenomic libraries is inefficient due to two main limitations. First, E. coli is often unable to recognize heterologous promoters in the metagenomic library. Second, searching for biocatalytic functions often involves screening for the presence of small molecules, which can be time and resource intensive. The proposed solution is to develop a culture-independent method for high-throughput screening of metagenomic libraries. In the first aim, it is proposed that by expressing transcription machinery (sigma factors) from prokaryotes phylogenetically distant from the host, the host's RNA polymerase will better recognize heterologous promoters, improving transcription of the genetic elements in metagenomic libraries. To improve heterologous gene expression from metagenomic libraries, sigma factors will be expressed in host strains from a range of bacterial species (including Bacillus subtilis and Lactobacillus plantarum). Transcription of heterologous libraries will be quantified by fusing the green fluorescent protein gene to small library inserts and measuring fluorescence with flow cytometry. The expression level of heterologous sigma factors will be optimized by engineering the promoters and ribosomal binding sites (RBS) in order to obtain a good expression strain. Using this system, a metagenomic library will be constructed from soil bacteria and screened for genes imparting enhanced butanol tolerance. In the second aim, a transcriptional activator biosensor system will be incorporated in E. coli to sense a biochemical of interest. The biosensor can sense the intracellular biochemical concentration and induce transcription of the gfp gene. The biosensor will be tuned by promoter and RBS engineering for optimized fluorescence-activated cell sorting, a high-throughput method. Finally, in the third aim, the biosensor system will be incorporated into the heterologous sigma factor expressing strain and transformed with a large-insert, fosmid-based synthetic metagenomic library. A precursor chemical will be supplied to the culture; if the precursor is converted to the biochemical sensed by the biosensor, the cell will fluoresce and can be isolated. These isolates will be characterized to determine the genetic element responsible for the enzymatic activity. Once developed, this method has the potential to quickly and accurately identify enzymatic genes from difficult-to-culture organisms, thereby providing a new means by which to explore a larger part of the large metagenomic space.
描述(由申请人提供):宏基因组文库的有效筛选将使得能够探索自然界中微生物的巨大多样性,这些微生物负责人类生活所必需的许多有趣和有价值的功能。例如,在人类肠道中,细菌群落可以解毒有害化学物质,合成维生素,并帮助消化人体无法自行消化的营养物质,以及其他重要功能。不幸的是,绝大多数细菌不能在实验室中培养,因此生物催化活性的遗传基础往往未被发现。微生物学的主力生物E.大肠杆菌可以容纳这些细菌群落的基因组DNA的遗传集合(称为宏基因组文库)。由于两个主要限制,宏基因组文库的筛选是低效的。首先,E.大肠杆菌通常无法识别宏基因组库中的异源启动子。其次,寻找生物催化功能通常涉及筛选小分子的存在,这可能是时间和资源密集型的。提出的解决方案是开发一种不依赖培养的方法,用于宏基因组文库的高通量筛选。在第一个目标中,提出了通过表达来自与宿主遗传学上相距较远的原核生物的转录机制(σ因子),宿主的RNA聚合酶将更好地识别异源启动子,从而改善宏基因组文库中遗传元件的转录。为了改善来自宏基因组文库的异源基因表达,σ因子将在来自一系列细菌物种(包括枯草芽孢杆菌和植物乳杆菌)的宿主菌株中表达。将通过将绿色荧光蛋白基因融合到小文库插入物并用流式细胞术测量荧光来定量异源文库的转录。异源σ因子的表达水平将通过工程化启动子和核糖体结合位点(RBS)来优化,以获得良好的表达菌株。使用该系统,将从土壤细菌构建宏基因组文库,并筛选赋予增强的丁醇耐受性的基因。在第二个目标中,将转录激活因子生物传感器系统并入E.大肠杆菌来感测感兴趣的生化物质。该生物传感器可以检测细胞内的生化浓度并诱导gfp基因的转录。该生物传感器将通过启动子和RBS工程进行调整,以优化荧光激活细胞分选,这是一种高通量方法。最后,在第三个目的中,将生物传感器系统并入异源σ因子表达菌株中,并用大插入物、基于fosmid的合成宏基因组文库转化。前体化学品将被提供给培养物;如果前体被转化为生物传感器感测的生化物质,则细胞将发出荧光并可以被分离。将对这些分离株进行表征,以确定负责酶活性的遗传元件。一旦开发出来,这种方法就有可能快速准确地从难以培养的生物体中识别酶基因,从而提供一种新的手段来探索大宏基因组空间的更大部分。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicholas Richard Sandoval其他文献
Nicholas Richard Sandoval的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicholas Richard Sandoval', 18)}}的其他基金
Transcription engineering for biosensor-based screening of metagenomic libraries
基于生物传感器的宏基因组文库筛选的转录工程
- 批准号:
8933964 - 财政年份:2014
- 资助金额:
$ 5.62万 - 项目类别:
相似海外基金
Can antibiotics disrupt biogeochemical nitrogen cycling in the coastal ocean?
抗生素会破坏沿海海洋的生物地球化学氮循环吗?
- 批准号:
2902098 - 财政年份:2024
- 资助金额:
$ 5.62万 - 项目类别:
Studentship
The role of RNA repair in bacterial responses to translation-inhibiting antibiotics
RNA修复在细菌对翻译抑制抗生素的反应中的作用
- 批准号:
BB/Y004035/1 - 财政年份:2024
- 资助金额:
$ 5.62万 - 项目类别:
Research Grant
Metallo-Peptides: Arming Cyclic Peptide Antibiotics with New Weapons to Combat Antimicrobial Resistance
金属肽:用新武器武装环肽抗生素以对抗抗菌素耐药性
- 批准号:
EP/Z533026/1 - 财政年份:2024
- 资助金额:
$ 5.62万 - 项目类别:
Research Grant
Towards the sustainable discovery and development of new antibiotics
迈向新抗生素的可持续发现和开发
- 批准号:
FT230100468 - 财政年份:2024
- 资助金额:
$ 5.62万 - 项目类别:
ARC Future Fellowships
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
- 批准号:
EP/Y023528/1 - 财政年份:2024
- 资助金额:
$ 5.62万 - 项目类别:
Research Grant
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
- 批准号:
BB/Y007611/1 - 财政年份:2024
- 资助金额:
$ 5.62万 - 项目类别:
Research Grant
The disulfide bond as a chemical tool in cyclic peptide antibiotics: engineering disulfide polymyxins and murepavadin
二硫键作为环肽抗生素的化学工具:工程化二硫多粘菌素和 murepavadin
- 批准号:
MR/Y033809/1 - 财政年份:2024
- 资助金额:
$ 5.62万 - 项目类别:
Research Grant
Role of phenotypic heterogeneity in mycobacterial persistence to antibiotics: Prospects for more effective treatment regimens
表型异质性在分枝杆菌对抗生素持久性中的作用:更有效治疗方案的前景
- 批准号:
494853 - 财政年份:2023
- 资助金额:
$ 5.62万 - 项目类别:
Operating Grants
Imbalance between cell biomass production and envelope biosynthesis underpins the bactericidal activity of cell wall -targeting antibiotics
细胞生物量产生和包膜生物合成之间的不平衡是细胞壁靶向抗生素杀菌活性的基础
- 批准号:
2884862 - 财政年份:2023
- 资助金额:
$ 5.62万 - 项目类别:
Studentship
Narrow spectrum antibiotics for the prevention and treatment of soft-rot plant disease
防治植物软腐病的窄谱抗生素
- 批准号:
2904356 - 财政年份:2023
- 资助金额:
$ 5.62万 - 项目类别:
Studentship