Integrative methods for high-dimensional genomics data
高维基因组数据的整合方法
基本信息
- 批准号:8685000
- 负责人:
- 金额:$ 45.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-23 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:Bayesian MethodBioinformaticsBiologicalBiological AssayBiologyCancer PatientClinicalClinical DataCommunicationComputational BiologyComputer SimulationComputer softwareDataData AnalysesData SetDependenceDependencyDevelopmentDiagnosisDocumentationEnsureFamilyGeneticGenomicsGoalsHuman ResourcesInterdisciplinary StudyJointsLaboratoriesLettersLinkMalignant NeoplasmsMethodologyMethodsModelingMultivariate AnalysisPatient CarePrevention strategyPrincipal InvestigatorProcessReproducibilityResearchResearch PersonnelRiskScientistSelection for TreatmentsStatistical MethodsStatistical ModelsStructureWorkcancer preventioncomputerized toolsepigenomicsexperienceimprovedindexingnoveloutcome forecastresponsesoftware developmenttranscriptomicstreatment strategyuser-friendly
项目摘要
DESCRIPTION (provided by applicant): The primary objective of this proposal is to develop adaptive and exible statistical models for analyses of multivariate, functional and spatial data from high-throughput biomedical studies. These studies raise computational, modeling, and inferential challenges with respect to high-dimensionality as well as structured dependency induced by the various aspects of the processes generating the data. Our work is motivated by, and will be applied to, data from a variety of high- throughput cancer-related studies that were conducted by our biomedical collaborators, in genomics, epigenomics and transcriptomics; although our methods are generally applicable to other contexts. The short-term objective of this research is to develop novel statistical methods and computational tools for statistical and probabilistic modeling of such high-throughput data with particular emphasis on integrative methods to combine information within and across dierent assays as well as clinical data to answer important biological questions. Our long-term goal is to improve risk prediction and treatment selection in cancer prevention, diagnosis and prognosis. We will accomplish the objective of this application by pursuing the following ve specic aims (1) develop new methodology for Bayesian adaptive generalized functional linear mixed models, allowing for local and nonlinear association structures between scalar responses and functional predictors (2) develop hierarchical Bayesian joint models for integrating diverse types of multivariate and functional data. (3) develop Bayesian spatial-functional process models for spatially indexed high-dimensional functional data, methods for data requiring a broader class of within-function and between-function covariance structures using exible families of covariance functions. (4) develop multivariate Bayesian spatial-functional models for joint modeling of multiple spatially indexed functional data. (5) develop ecient, user-friendly and freely available software for the proposed methods.
DESCRIPTION (provided by applicant): The primary objective of this proposal is to develop adaptive and exible statistical models for analyses of multivariate, functional and spatial data from high-throughput biomedical studies. These studies raise computational, modeling, and inferential challenges with respect to high-dimensionality as well as structured dependency induced by the various aspects of the processes generating the data. Our work is motivated by, and will be applied to, data from a variety of high- throughput cancer-related studies that were conducted by our biomedical collaborators, in genomics, epigenomics and transcriptomics; although our methods are generally applicable to other contexts. The short-term objective of this research is to develop novel statistical methods and computational tools for statistical and probabilistic modeling of such high-throughput data with particular emphasis on integrative methods to combine information within and across dierent assays as well as clinical data to answer important biological questions. Our long-term goal is to improve risk prediction and treatment selection in cancer prevention, diagnosis and prognosis. We will accomplish the objective of this application by pursuing the following ve specic aims (1) develop new methodology for Bayesian adaptive generalized functional linear mixed models, allowing for local and nonlinear association structures between scalar responses and functional predictors (2) develop hierarchical Bayesian joint models for integrating diverse types of multivariate and functional data. (3) develop Bayesian spatial-functional process models for spatially indexed high-dimensional functional data, methods for data requiring a broader class of within-function and between-function covariance structures using exible families of covariance functions. (4) develop multivariate Bayesian spatial-functional models for joint modeling of multiple spatially indexed functional data. (5) develop ecient, user-friendly and freely available software for the proposed methods.
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Two-Sample Test for Equality of Means in High Dimension.
- DOI:10.1080/01621459.2014.934826
- 发表时间:2015-06-01
- 期刊:
- 影响因子:3.7
- 作者:Gregory KB;Carroll RJ;Baladandayuthapani V;Lahiri SN
- 通讯作者:Lahiri SN
Prediction-Oriented Marker Selection (PROMISE): With Application to High-Dimensional Regression.
- DOI:10.1007/s12561-016-9169-5
- 发表时间:2017-06
- 期刊:
- 影响因子:1
- 作者:Kim S;Baladandayuthapani V;Lee JJ
- 通讯作者:Lee JJ
Bayesian Variable Selection in Linear Regression in One Pass for Large Data Sets.
大型数据集一次性线性回归中的贝叶斯变量选择。
- DOI:10.1145/2629617
- 发表时间:2014
- 期刊:
- 影响因子:3.6
- 作者:Ordonez,Carlos;Garcia-Alvarado,Carlos;Baladandayuthapani,Veerabhadran
- 通讯作者:Baladandayuthapani,Veerabhadran
STATISTICAL TESTS FOR LARGE TREE-STRUCTURED DATA.
- DOI:10.1080/01621459.2016.1240081
- 发表时间:2017
- 期刊:
- 影响因子:3.7
- 作者:
- 通讯作者:
Role of multiresolution vulnerability indices in COVID-19 spread in India: a Bayesian model-based analysis.
- DOI:10.1136/bmjopen-2021-056292
- 发表时间:2022-11-17
- 期刊:
- 影响因子:2.9
- 作者:Bhattacharyya, Rupam;Burman, Anik;Singh, Kalpana;Banerjee, Sayantan;Maity, Subha;Auddy, Arnab;Rout, Sarit Kumar;Lahoti, Supriya;Panda, Rajmohan;Baladandayuthapani, Veerabhadran
- 通讯作者:Baladandayuthapani, Veerabhadran
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Veerabhadran Baladandayuthapani其他文献
Veerabhadran Baladandayuthapani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Veerabhadran Baladandayuthapani', 18)}}的其他基金
Bayesian Network-Based Integrative Genomics Methods for Precision Medicine
基于贝叶斯网络的精准医学综合基因组学方法
- 批准号:
10577871 - 财政年份:2021
- 资助金额:
$ 45.11万 - 项目类别:
Proteomic-based integrated subject-specific networks in cancer
癌症中基于蛋白质组学的综合主题特定网络
- 批准号:
9506027 - 财政年份:2018
- 资助金额:
$ 45.11万 - 项目类别:
Integrative methods for high-dimensional genomics data
高维基因组数据的整合方法
- 批准号:
8323898 - 财政年份:2011
- 资助金额:
$ 45.11万 - 项目类别:
Integrative methods for high-dimensional genomics data
高维基因组数据的整合方法
- 批准号:
8504822 - 财政年份:2011
- 资助金额:
$ 45.11万 - 项目类别:
Integrative methods for high-dimensional genomics data
高维基因组数据的整合方法
- 批准号:
8162065 - 财政年份:2011
- 资助金额:
$ 45.11万 - 项目类别:
相似海外基金
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
- 批准号:
2318829 - 财政年份:2023
- 资助金额:
$ 45.11万 - 项目类别:
Continuing Grant
Analysis of biological small molecule mixtures using multiple modes of mass spectrometric fragmentation coupled with new bioinformatics workflows
使用多种质谱裂解模式结合新的生物信息学工作流程分析生物小分子混合物
- 批准号:
BB/X019802/1 - 财政年份:2023
- 资助金额:
$ 45.11万 - 项目类别:
Research Grant
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
- 批准号:
2318830 - 财政年份:2023
- 资助金额:
$ 45.11万 - 项目类别:
Continuing Grant
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
- 批准号:
2318831 - 财政年份:2023
- 资助金额:
$ 45.11万 - 项目类别:
Continuing Grant
Bioinformatics-powered genetic characterization of the impact of biological systems on Alzheimer's disease and neurodegeneration
基于生物信息学的生物系统对阿尔茨海默病和神经退行性疾病影响的遗传表征
- 批准号:
484699 - 财政年份:2022
- 资助金额:
$ 45.11万 - 项目类别:
Operating Grants
REU Site: Bioinformatics Research and Interdisciplinary Training Experience in Analysis and Interpretation of Information-Rich Biological Data Sets (REU-BRITE)
REU网站:信息丰富的生物数据集分析和解释的生物信息学研究和跨学科培训经验(REU-BRITE)
- 批准号:
1949968 - 财政年份:2020
- 资助金额:
$ 45.11万 - 项目类别:
Standard Grant
REU Site: Bioinformatics Research and Interdisciplinary Training Experience in Analysis and Interpretation of Information-Rich Biological Data Sets (REU-BRITE)
REU网站:信息丰富的生物数据集分析和解释的生物信息学研究和跨学科培训经验(REU-BRITE)
- 批准号:
1559829 - 财政年份:2016
- 资助金额:
$ 45.11万 - 项目类别:
Continuing Grant
Bioinformatics Tools to Design and Optimize Biological Sensor Systems
用于设计和优化生物传感器系统的生物信息学工具
- 批准号:
416848-2011 - 财政年份:2011
- 资助金额:
$ 45.11万 - 项目类别:
University Undergraduate Student Research Awards
ABI Development: bioKepler: A Comprehensive Bioinformatics Scientific Workflow Module for Distributed Analysis of Large-Scale Biological Data
ABI 开发:bioKepler:用于大规模生物数据分布式分析的综合生物信息学科学工作流程模块
- 批准号:
1062565 - 财政年份:2011
- 资助金额:
$ 45.11万 - 项目类别:
Continuing Grant
Bioinformatics-based hypothesis generation with biological validation for plant stress biology
基于生物信息学的假设生成和植物逆境生物学的生物验证
- 批准号:
261818-2006 - 财政年份:2010
- 资助金额:
$ 45.11万 - 项目类别:
Discovery Grants Program - Individual