Statistical models to investigate long-distance QTL transcription regulation
研究长距离QTL转录调控的统计模型
基本信息
- 批准号:9064281
- 负责人:
- 金额:$ 24.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-06 至 2016-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Project Summary/Abstract
Thousands of genome-wide association studies link speci c diseases or complex phenotypes to single
mutations in the human genome. But translating these results to medical treatments requires a
precise understanding of how that mutation contributes to the mechanism of disease. Currently,
the regulatory role of single nucleotide polymorphisms (SNPs) is, for the most part, con ned to
local, or cis-, expression quantitative trait loci (eQTLs) in a small number of human tissues. But
not all diseases or complex phenotypes are mediated by cis-eQTLs. Very few long-distance, or
trans-, eQTLs have been identi ed and validated in human tissues, although trans-eQTLs play an
important role in some complex phenotypes. Alternative splicing has also been shown to modulate
certain phenotypes; however, little is known about SNPs that regulate alternative splicing. The
proposed K99/R00 research seeks to design statistical methods that build gene and
transcript networks to identify SNPs that regulate gene and mRNA isoform tran-
scription, both locally and over long distances, and to validate those ndings, for the
purpose of providing insight into mechanisms for complex phenotypes and disease.
We propose to leverage cis-eQTLs and gene expression data in humans identi ed in our current
work to build precise, directed gene networks on a genome-scale. We will build these networks using
Bayesian statistical models to compute the probability of a particular network with respect to each
gene in the network jointly, with associated eQTLs providing information about whether regulated
genes are upstream or downstream of other network genes. We will use Markov chain Monte Carlo
and linear programming relaxation methods that have been shown to nd near-optimal solutions
to this type of problem. We will use these networks to identify trans-eQTLs, and quantify the
e ect of each trans-eQTL in a particular process using Bayesian statistical tests developed in our
lab. Subsequently, we propose to exploit the opportunities of novel RNA sequencing techniques
and nonparametric statistical models to identify transcript isoforms for each transcribed gene and,
simultaneously, individual-speci c transcript levels by extending sparse factor analysis models.
This will enable us to identify QTLs that regulate the transcription of speci c transcript isoforms
(tQTLs) via alternative splicing events by extending the methods we have for eQTL identi cation.
We will use the methodology we developed for eQTLs to build networks for transcript isoforms
(transcript networks ). Finally, we will use transcript networks to identify and quantify tQTLs that
regulate individual-speci c levels of transcript isoforms both locally and over long genetic distances,
as with eQTLs. We will make all of our methods and results publicly available.
项目总结/摘要
数以千计的全基因组关联研究将特定疾病或复杂表型与单个
人类基因组的突变。但是将这些结果转化为医学治疗需要一个
精确了解突变如何导致疾病的机制。目前,
单核苷酸多态性(SNPs)的调节作用,在很大程度上,
局部或顺式表达的数量性状基因座(eQTL)在少数人体组织。但
并非所有疾病或复杂表型都由顺式eQTL介导。很少有长途电话,或者
尽管trans-eQTL在人类组织中起着重要的作用,
在一些复杂的表型中起重要作用。选择性剪接也被证明可以调节
然而,对调节选择性剪接的SNP知之甚少。的
拟议的K99/R 00研究旨在设计统计方法,
转录本网络,以确定调节基因和mRNA亚型转录的SNP。
无论是在本地还是在长距离,并验证这些ndings,为
目的是提供对复杂表型和疾病机制的深入了解。
我们建议利用我们目前在艾德鉴定的人类中的顺式eQTL和基因表达数据,
致力于在基因组规模上建立精确的定向基因网络。我们将使用
贝叶斯统计模型,用于计算特定网络相对于
基因在网络中联合,与相关的eQTL提供信息,是否调控
基因是其他网络基因的上游或下游。我们将使用马尔可夫链蒙特卡罗
和线性规划松弛方法,已被证明ND接近最佳的解决方案
解决这类问题。我们将使用这些网络来鉴定trans-eQTL,并量化
在一个特定的过程中,使用贝叶斯统计检验,我们开发了每个trans-eQTL的效果,
实验室随后,我们建议利用新的RNA测序技术的机会,
和非参数统计模型来鉴定每个转录基因的转录物同种型,
同时,通过扩展稀疏因子分析模型,对个体特异性转录水平进行分析。
这将使我们能够鉴定调控特定转录本异构体转录的QTL
(tQTL)通过选择性剪接事件通过扩展我们用于eQTL鉴定的方法。
我们将使用我们为eQTL开发的方法来构建转录异构体网络
(Transcript Networks)。最后,我们将使用转录本网络来鉴定和量化tQTL,
在局部和长遗传距离上调节转录物同种型的个体特异性水平,
与eQTL一样。我们将公开我们所有的方法和结果。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stability selection for regression-based models of transcription factor-DNA binding specificity.
- DOI:10.1093/bioinformatics/btt221
- 发表时间:2013-07-01
- 期刊:
- 影响因子:0
- 作者:Mordelet F;Horton J;Hartemink AJ;Engelhardt BE;Gordân R
- 通讯作者:Gordân R
Predicting genome-wide DNA methylation using methylation marks, genomic position, and DNA regulatory elements.
- DOI:10.1186/s13059-015-0581-9
- 发表时间:2015-01-24
- 期刊:
- 影响因子:12.3
- 作者:Zhang W;Spector TD;Deloukas P;Bell JT;Engelhardt BE
- 通讯作者:Engelhardt BE
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Barbara Engelhardt其他文献
Barbara Engelhardt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Barbara Engelhardt', 18)}}的其他基金
A kinetic framework to map the genetic determinants of alternative RNA isoform expression
绘制替代 RNA 亚型表达遗传决定因素的动力学框架
- 批准号:
10638072 - 财政年份:2023
- 资助金额:
$ 24.72万 - 项目类别:
Statistical models to investigate long-distance QTL transcription regulation
研究长距离QTL转录调控的统计模型
- 批准号:
8520752 - 财政年份:2011
- 资助金额:
$ 24.72万 - 项目类别:
Statistical models to investigate long-distance QTL transcription regulation
研究长距离QTL转录调控的统计模型
- 批准号:
8688293 - 财政年份:2011
- 资助金额:
$ 24.72万 - 项目类别:
Statistical models to investigate long-distance QTL transcription regulation
研究长距离QTL转录调控的统计模型
- 批准号:
8166365 - 财政年份:2011
- 资助金额:
$ 24.72万 - 项目类别:
Statistical models to investigate long-distance QTL transcription regulation
研究长距离QTL转录调控的统计模型
- 批准号:
8539068 - 财政年份:2011
- 资助金额:
$ 24.72万 - 项目类别:
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
河北南部地区灰霾的来源和形成机制研究
- 批准号:41105105
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
保险风险模型、投资组合及相关课题研究
- 批准号:10971157
- 批准年份:2009
- 资助金额:24.0 万元
- 项目类别:面上项目
RKTG对ERK信号通路的调控和肿瘤生成的影响
- 批准号:30830037
- 批准年份:2008
- 资助金额:190.0 万元
- 项目类别:重点项目
新型手性NAD(P)H Models合成及生化模拟
- 批准号:20472090
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Using mHealth to investigate intersectionality and health behaviors: Implications for conceptual models and cancer prevention interventions for marginalized populations
使用移动医疗研究交叉性和健康行为:对边缘化人群的概念模型和癌症预防干预措施的影响
- 批准号:
10746886 - 财政年份:2023
- 资助金额:
$ 24.72万 - 项目类别:
Developing new 3D-hydrogel models of the human mammary gland to investigate breast cancer initiation
开发新的人类乳腺 3D 水凝胶模型来研究乳腺癌的发生
- 批准号:
2862480 - 财政年份:2023
- 资助金额:
$ 24.72万 - 项目类别:
Studentship
eMB: Enhancing Mathematical Models to Investigate the Influences of Climate Change on Zoonotic Spillover
eMB:增强数学模型以研究气候变化对人畜共患病溢出效应的影响
- 批准号:
2325267 - 财政年份:2023
- 资助金额:
$ 24.72万 - 项目类别:
Standard Grant
Investigate the utility of APLP1 as an endosomal biomarker for Alzheimer's Disease in Down Syndrome
研究 APLP1 作为唐氏综合症阿尔茨海默氏病内体生物标志物的效用
- 批准号:
10727134 - 财政年份:2023
- 资助金额:
$ 24.72万 - 项目类别:
Multilineage DAmFRET to investigate AD/ADRD protein phase behavior in neural tissue models
多谱系 DAmFRET 研究神经组织模型中 AD/ADRD 蛋白相行为
- 批准号:
10583428 - 财政年份:2023
- 资助金额:
$ 24.72万 - 项目类别:
Chemical tools to investigate chain-flipping in quorum signal synthases
研究群体信号合酶链翻转的化学工具
- 批准号:
10645548 - 财政年份:2023
- 资助金额:
$ 24.72万 - 项目类别:
Combining In Vitro and In Silico Models to Investigate Antiretroviral Drug Transport Across the Blood Brain Barrier for the Treatment of HIV-1 Infection in the Brain
结合体外和计算机模型研究抗逆转录病毒药物跨血脑屏障转运以治疗大脑中的 HIV-1 感染
- 批准号:
10838759 - 财政年份:2023
- 资助金额:
$ 24.72万 - 项目类别:
Investigate the impact of physiological microbial exposure on regulatory T cell-mediated immune regulation
研究生理微生物暴露对调节性 T 细胞介导的免疫调节的影响
- 批准号:
10727298 - 财政年份:2023
- 资助金额:
$ 24.72万 - 项目类别:
Leveraging mouse and human models to investigate neuroprotective effects of blood-derived exerkines in Alzheimer's disease
利用小鼠和人类模型研究血液来源的运动因子对阿尔茨海默病的神经保护作用
- 批准号:
10901031 - 财政年份:2023
- 资助金额:
$ 24.72万 - 项目类别:
Interpretable Deep Learning Methods to Investigate Genetics and Epigenetics of Alzheimer's Disease at a Single-Cell Resolution
可解释的深度学习方法以单细胞分辨率研究阿尔茨海默病的遗传学和表观遗传学
- 批准号:
10698166 - 财政年份:2022
- 资助金额:
$ 24.72万 - 项目类别: