Enhancing the PESTICA Toolkit: Open-Source Physiologic Noise Detection and Remova

增强 PESTICA 工具包:开源生理噪声检测和消除

基本信息

  • 批准号:
    8440746
  • 负责人:
  • 金额:
    $ 7.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-04-01 至 2015-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): In this application, we propose a strategy to remove physiologic noise from the cardiac and respiratory processes as sources of bias and reduced specificity in functional magnetic resonance imaging (MRI) and functional connectivity MRI data. These noise sources are difficult to correct for without special equipment for parallel monitoring and it is difficult to ascertain the success of the correction process itself. As a result, many researchers necessarily ignore these sources or use amelioration methods that are not specific to these sources. Due to the size and variability of these sources across populations, this represents a critical barrier to progress in the field. However, recent progress in physiologic estimation and correction by the investigators has produced a tool to enable researchers to retrospectively correct their data, in a manner equivalent to correcting their data with parallel monitored noise sources. This is an important advance, but only a small set of researchers are currently using these tools. The reasons are twofold: 1) the tool is not easy to use and requires additional software and 2) past experience with physiologic correction is limited to those investigators who have access to monitoring equipment. To counter these problems, we propose to improve the integration of our tools with the Analysis of Functional NeuroImages (AFNI) library such that at the conclusion of our project physiologic correction is as easy to apply as volumetric motion correction currently is. In addition, we propose to produce validated physiologic estimators for the bulk of the publicly-available data maintained by the Functional Connectomes Project and its most recent initiative, the International Neuroimaging Data-sharing Initiative. With the recent increase in analyses of publicly-available MRI data, this project will dramatically increase community experience with physiologic correction and enable a shift from the analysis and reporting of physiologic- corrupted data to the analysis and reporting of physiologic-uncorrupted data.
描述(由申请人提供):在本申请中,我们提出了一种从心脏和呼吸过程中去除生理噪声的策略,该生理噪声是功能磁共振成像(MRI)和功能连接MRI数据中偏倚和特异性降低的来源。这些噪声源在没有用于并行监测的特殊设备的情况下难以校正,并且难以确定校正过程本身的成功。因此,许多研究人员必然会忽略这些来源或使用不特定于这些来源的改进方法。由于这些来源在人群中的规模和变异性,这是该领域取得进展的关键障碍。然而,最近的进展,在生理估计和校正的研究人员已经产生了一种工具,使研究人员能够回顾性地纠正他们的数据,在某种程度上相当于纠正他们的数据与并行监测噪声源。这是一个重要的进步,但目前只有一小部分研究人员在使用这些工具。原因有二:1)该工具不易使用,需要额外的软件; 2)过去的生理矫正经验仅限于能够使用监测设备的研究者。为了解决这些问题,我们建议改进我们的工具与功能神经影像分析(AFNI)库的集成,以便在我们的项目结束时,生理校正与体积运动校正一样容易应用。此外,我们建议为功能性连接体项目及其最近的倡议国际神经影像数据共享倡议所维护的大量公开数据产生经验证的生理估计值。随着最近对公开可用MRI数据的分析增加,该项目将显著增加生理校正的社区经验,并实现从分析和报告生理损坏数据到分析和报告生理未损坏数据的转变。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark J Lowe其他文献

Mark J Lowe的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark J Lowe', 18)}}的其他基金

Neuroimaging Core
神经影像核心
  • 批准号:
    10675666
  • 财政年份:
    2021
  • 资助金额:
    $ 7.4万
  • 项目类别:
Neuroimaging Core
神经影像核心
  • 批准号:
    10263714
  • 财政年份:
    2021
  • 资助金额:
    $ 7.4万
  • 项目类别:
Neuroimaging Core
神经影像核心
  • 批准号:
    10474606
  • 财政年份:
    2021
  • 资助金额:
    $ 7.4万
  • 项目类别:

相似海外基金

Development of Image Analysis Algorithms for Computational Assessment of Cardiac Structure and Function
用于心脏结构和功能计算评估的图像分析算法的开发
  • 批准号:
    RGPIN-2016-06270
  • 财政年份:
    2022
  • 资助金额:
    $ 7.4万
  • 项目类别:
    Discovery Grants Program - Individual
Development of Image Analysis Algorithms for Computational Assessment of Cardiac Structure and Function
用于心脏结构和功能计算评估的图像分析算法的开发
  • 批准号:
    RGPIN-2016-06270
  • 财政年份:
    2021
  • 资助金额:
    $ 7.4万
  • 项目类别:
    Discovery Grants Program - Individual
Development of Image Analysis Algorithms for Computational Assessment of Cardiac Structure and Function
用于心脏结构和功能计算评估的图像分析算法的开发
  • 批准号:
    RGPIN-2016-06270
  • 财政年份:
    2020
  • 资助金额:
    $ 7.4万
  • 项目类别:
    Discovery Grants Program - Individual
AitF: Collaborative Research: Topological Algorithms for 3D/4D Cardiac Images: Understanding Complex and Dynamic Structures
AitF:协作研究:3D/4D 心脏图像的拓扑算法:理解复杂和动态结构
  • 批准号:
    2051197
  • 财政年份:
    2020
  • 资助金额:
    $ 7.4万
  • 项目类别:
    Standard Grant
Development of Image Analysis Algorithms for Computational Assessment of Cardiac Structure and Function
用于心脏结构和功能计算评估的图像分析算法的开发
  • 批准号:
    RGPIN-2016-06270
  • 财政年份:
    2019
  • 资助金额:
    $ 7.4万
  • 项目类别:
    Discovery Grants Program - Individual
Development of Image Analysis Algorithms for Computational Assessment of Cardiac Structure and Function
用于心脏结构和功能计算评估的图像分析算法的开发
  • 批准号:
    RGPIN-2016-06270
  • 财政年份:
    2018
  • 资助金额:
    $ 7.4万
  • 项目类别:
    Discovery Grants Program - Individual
AitF: Collaborative Research: Topological Algorithms for 3D/4D Cardiac Images: Understanding Complex and Dynamic Structures
AitF:协作研究:3D/4D 心脏图像的拓扑算法:理解复杂和动态结构
  • 批准号:
    1855760
  • 财政年份:
    2018
  • 资助金额:
    $ 7.4万
  • 项目类别:
    Standard Grant
Development of Image Analysis Algorithms for Computational Assessment of Cardiac Structure and Function
用于心脏结构和功能计算评估的图像分析算法的开发
  • 批准号:
    RGPIN-2016-06270
  • 财政年份:
    2017
  • 资助金额:
    $ 7.4万
  • 项目类别:
    Discovery Grants Program - Individual
AitF: Collaborative Research: Topological Algorithms for 3D/4D Cardiac Images: Understanding Complex and Dynamic Structures
AitF:协作研究:3D/4D 心脏图像的拓扑算法:理解复杂和动态结构
  • 批准号:
    1733843
  • 财政年份:
    2017
  • 资助金额:
    $ 7.4万
  • 项目类别:
    Standard Grant
AitF: Collaborative Research: Topological Algorithms for 3D/4D Cardiac Images: Understanding Complex and Dynamic Structures
AitF:协作研究:3D/4D 心脏图像的拓扑算法:理解复杂和动态结构
  • 批准号:
    1733866
  • 财政年份:
    2017
  • 资助金额:
    $ 7.4万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了