Development of Image Analysis Algorithms for Computational Assessment of Cardiac Structure and Function

用于心脏结构和功能计算评估的图像分析算法的开发

基本信息

  • 批准号:
    RGPIN-2016-06270
  • 负责人:
  • 金额:
    $ 2.62万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Advancements in cardiac magnetic resonance (MR) imaging technologies in the past decade have enabled great potential for developing novel measurements to detect abnormalities in the structure and function of the heart. Two such advancements include acquisition of high-resolution (Hi-res) three-dimensional (3D) images with increased spatial resolution, and quantitative imaging techniques to differentiate injured (infarcted) tissue from healthy tissue in the cardiac muscle. Tissue in infarcted regions plays a central role in the mechanisms that lead to heart dysfunction and therefore, accurate and reproducible estimation of the infarct regions is paramount to the analysis of cardiac structure and function. Parallel to these developments, computational modeling of cardiac function has emerged as a promising tool to predict abnormal electrical activity of the heart. These computational models are built based on the information extracted from cardiac MR images and must incorporate accurate geometries of the ventricles and infarcted regions of the heart for accurate prediction. This presents us with an opportunity to evaluate whether incorporating Hi-res, quantitative imaging methods in building computational models, as compared to the models generated from conventional low-resolution images, will improve the sensitivity and specificity in predicting abnormal electrical activities of the heart. However, in order to extract geometric information from these 3D MR images, the development of robust, automated image analysis methods is required. The overall goal of the research program will be to address this need by developing advanced image analysis tools for the non-invasive assessment of the cardiac structure and its function. In particular, image analysis methods will be developed to align cardiac MR images to a common reference to correct for cardiac motion and extract the 3D ventricular and infarct geometry of the heart. Computational simulations of the electrical activity of the heart will then be used to evaluate efficacy of the 3D MR technique. This research program will integrate emerging advances in cardiac MR imaging and computational cardiology through novel developments in medical image analysis. The anticipated significance of this work to biomedical engineering and imaging science is twofold: engineering innovations resulting from the development of new image analysis methods for 3D MR images; and enabling our understanding of accurate methods to image the infarct structure. By accurately incorporating the infarct structure, these virtual electrophysiological models may provide a tool to non-invasively interrogate the heart without the need for invasive catheter-based methods. Although the proposed algorithms will initially be developed for cardiac MR images, they will be directly applicable to analyzing images of other imaging techniques and organs.
在过去的十年中,心脏磁共振(MR)成像技术的进步使得开发新的测量方法来检测心脏结构和功能的异常具有巨大的潜力。两个这样的进步包括获得空间分辨率更高的高分辨率(Hi-res)三维(3D)图像,以及区分心肌受损(梗死)组织和健康组织的定量成像技术。梗死区的组织在导致心脏功能障碍的机制中起着核心作用,因此,准确和可重复地估计梗死区对于分析心脏的结构和功能至关重要。与这些发展相平行的是,心脏功能的计算模型已经成为预测心脏异常电活动的一种有前途的工具。这些计算模型是基于从心脏磁共振图像中提取的信息而建立的,并且必须包含准确的脑室和心脏梗塞区的几何形状以进行准确的预测。这为我们提供了一个机会来评估与传统的低分辨率图像生成的模型相比,在建立计算模型时结合高分辨率、定量成像方法是否将提高预测心脏异常电活动的敏感性和特异性。然而,为了从这些3D MR图像中提取几何信息,需要开发稳健的、自动化的图像分析方法。该研究计划的总体目标将是通过开发先进的图像分析工具来满足这一需求,以非侵入性地评估心脏结构及其功能。特别是,将开发图像分析方法,将心脏磁共振图像与公共参考对准,以校正心脏运动并提取心脏的3D脑室和梗塞几何图形。然后将使用心脏电活动的计算机模拟来评估3D MR技术的有效性。这项研究计划将通过医学图像分析的新发展,整合心脏磁共振成像和计算心脏病学的新进展。这项工作对生物医学工程和成像科学的预期意义是双重的:开发新的3D MR图像图像分析方法带来的工程创新;以及使我们能够理解准确的方法来成像梗塞结构。通过准确地结合梗死结构,这些虚拟电生理模型可以提供一种非侵入性询问心脏的工具,而不需要基于侵入性导管的方法。虽然所提出的算法最初将用于心脏磁共振图像,但它们将直接适用于分析其他成像技术和器官的图像。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ukwatta, Eranga其他文献

Evaluation of fully automated myocardial segmentation techniques in native and contrast-enhanced T1-mapping cardiovascular magnetic resonance images using fully convolutional neural networks
  • DOI:
    10.1002/mp.14574
  • 发表时间:
    2020-12-01
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Farrag, Nadia A.;Lochbihler, Aidan;Ukwatta, Eranga
  • 通讯作者:
    Ukwatta, Eranga
Left atrial imaging and registration of fibrosis with conduction voltages using LGE-MRI and electroanatomical mapping
  • DOI:
    10.1016/j.compbiomed.2019.103341
  • 发表时间:
    2019-08-01
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Lee, Jinny;Thornhill, Rebecca E.;Ukwatta, Eranga
  • 通讯作者:
    Ukwatta, Eranga
3-D Carotid Multi-Region MRI Segmentation by Globally Optimal Evolution of Coupled Surfaces
  • DOI:
    10.1109/tmi.2013.2237784
  • 发表时间:
    2013-04-01
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
    Ukwatta, Eranga;Yuan, Jing;Fenster, Aaron
  • 通讯作者:
    Fenster, Aaron
Convolutional neural network-based approach for segmentation of left ventricle myocardial scar from 3D late gadolinium enhancement MR images
  • DOI:
    10.1002/mp.13436
  • 发表时间:
    2019-04-01
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Zabihollahy, Fatemeh;White, James A.;Ukwatta, Eranga
  • 通讯作者:
    Ukwatta, Eranga
Effect of T1-mapping technique and diminished image resolution on quantification of infarct mass and its ability in predicting appropriate ICD therapy
  • DOI:
    10.1002/mp.12840
  • 发表时间:
    2018-04-01
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Farrag, Nadia A.;Ramanan, Venkat;Ukwatta, Eranga
  • 通讯作者:
    Ukwatta, Eranga

Ukwatta, Eranga的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ukwatta, Eranga', 18)}}的其他基金

Development of Image Analysis Algorithms for Computational Assessment of Cardiac Structure and Function
用于心脏结构和功能计算评估的图像分析算法的开发
  • 批准号:
    RGPIN-2016-06270
  • 财政年份:
    2018
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Image Analysis of Fringe Patterns for a newly Built Interferometer
新建干涉仪条纹图案的图像分析
  • 批准号:
    530174-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Engage Grants Program
Development of Image Analysis Algorithms for Computational Assessment of Cardiac Structure and Function
用于心脏结构和功能计算评估的图像分析算法的开发
  • 批准号:
    RGPIN-2016-06270
  • 财政年份:
    2017
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Further Development and Evaluation of an Automated Image Analysis Pipeline for Semiconductor Circuit Reverse Engineering
用于半导体电路逆向工程的自动图像分析管道的进一步开发和评估
  • 批准号:
    507359-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Engage Plus Grants Program
Development of an Automated Image Processing Framework for Segmenting Floor Plans for Optimal Placement of Internet Access Points
开发用于分割平面图的自动图像处理框架,以实现互联网接入点的最佳放置
  • 批准号:
    518276-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Engage Grants Program
Development of Image Analysis Algorithms for Computational Assessment of Cardiac Structure and Function
用于心脏结构和功能计算评估的图像分析算法的开发
  • 批准号:
    RGPIN-2016-06270
  • 财政年份:
    2016
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Development of automated image analysis pipeline for semiconductor circuit reverse engineering
半导体电路逆向工程自动图像分析管道的开发
  • 批准号:
    500395-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Engage Grants Program
Time-resolved Characterization of Atherosclerotic Lesions Over The Cardiac Cycle
心脏周期中动脉粥样硬化病变的时间分辨特征
  • 批准号:
    454735-2014
  • 财政年份:
    2015
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Postdoctoral Fellowships
Time-resolved Characterization of Atherosclerotic Lesions Over The Cardiac Cycle
心脏周期中动脉粥样硬化病变的时间分辨特征
  • 批准号:
    454735-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Postdoctoral Fellowships
3D carotid arterial segmentation and composition analysis using three-dimensional ultrasound images
使用三维超声图像进行 3D 颈动脉分割和成分分析
  • 批准号:
    409596-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral

相似国自然基金

基于CE-3及IMAGE卫星地球等离子体层EUV探测数据的反演研究
  • 批准号:
    41904148
  • 批准年份:
    2019
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目
Raw-Image微小物体高精度位姿测量法
  • 批准号:
    61105029
  • 批准年份:
    2011
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Customizable Artificial Intelligence for the Biomedical Masses: Development of a User-Friendly Automated Machine Learning Platform for Biology Image Analysis.
面向生物医学大众的可定制人工智能:开发用于生物图像分析的用户友好的自动化机器学习平台。
  • 批准号:
    10699828
  • 财政年份:
    2023
  • 资助金额:
    $ 2.62万
  • 项目类别:
Development of three-dimensional image analysis technology in the echographic diagnosis for developmental dysplasia of the hip.
三维图像分析技术在发育性髋关节发育不良超声诊断中的进展
  • 批准号:
    23K08671
  • 财政年份:
    2023
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a new diagnostic method for coronary artery disease using automated image analysis with postmortem coronary angiography CT
使用死后冠状动脉造影 CT 自动图像分析开发冠状动脉疾病的新诊断方法
  • 批准号:
    23K19795
  • 财政年份:
    2023
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Development of imaging map of pancreatic cancer reflecting local tissue properties by using image analysis technology
利用图像分析技术开发反映局部组织特性的胰腺癌影像图
  • 批准号:
    23K07058
  • 财政年份:
    2023
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a system using AI Image analysis for vegetation survey in grassland.
开发利用人工智能图像分析进行草原植被调查的系统。
  • 批准号:
    23K05197
  • 财政年份:
    2023
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of surgical navigation system for esophageal atresia / tracheoesophageal fistula using AI Image analysis and forceps location information
利用AI图像分析和镊子位置信息开发食管闭锁/气管食管瘘手术导航系统
  • 批准号:
    22H03703
  • 财政年份:
    2022
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of Image Analysis Tools for Pulmonary Spatial and Temporal Mapping
肺部时空测绘图像分析工具的开发
  • 批准号:
    RGPIN-2019-06238
  • 财政年份:
    2022
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Development of transcranial magnetic stimulation therapy and image analysis method for Parkinson's disease
帕金森病经颅磁刺激疗法及图像分析方法的发展
  • 批准号:
    22K11460
  • 财政年份:
    2022
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of Image Analysis Tools for Pulmonary Spatial and Temporal Mapping
肺部时空测绘图像分析工具的开发
  • 批准号:
    RGPIN-2019-06238
  • 财政年份:
    2021
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Study of topological aspects in image analysis: application and development of magnitude
图像分析中的拓扑方面的研究:量级的应用和发展
  • 批准号:
    21K11966
  • 财政年份:
    2021
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了