ALL-OPTICAL HIGH-THROUGHPUT FUNCTIONAL CONNECTIVITY MAPPING USING ADVANCED MICROS

使用 Advanced Micros 进行全光高通量功能连接映射

基本信息

  • 批准号:
    8675233
  • 负责人:
  • 金额:
    $ 18.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-07-01 至 2015-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): All-Optical High-Throughput Functional Connectivity Mapping using Advanced Microscopy and Optogenetic Tools We propose an innovative and translational approach to map functional connections between cells in neuronal populations. Connectivity maps are the fundamental step to analyze neuronal networks. Traditionally, such maps were established by electrically recording from pairs of neurons by means of micropipettes. More recently, multi-patch protocols have been used, requiring complicated equipment and highly skilled experimenters. High-resolution connectomes are presently established by advanced histological techniques, involving serial sectioning and electron microscopy, however, this approach primarily produces anatomical maps and identification of functional connections remains difficult. Optogenetic tools and two-photon microscopy have dramatically changed functional connectivity mapping. For example, neurons expressing light-activated ion channels can be optically depolarized above their spiking threshold, and postsynaptic signals can be monitored in connected cells. Initially, hybrid approaches were taken, activating presynaptic neurons optically and measuring postsynaptic signals by whole-cell recording. More recently, all-optical mapping methods have been explored; combining light-activated channels to optically evoke activity and optical indicators to monitor activity. However, when using an all-optical approach to generate functional connectivity maps, two main challenges arise: Firstly, activating individual presynaptic neurons will produce hard to detect optical signals in postsynaptic cells as these sub-threshold postsynaptic potentials do not generate spiking. Secondly, concurrent optical stimulation and recording usually requires two separate excitation wavelengths and thus two costly lasers. Fortunately, both challenges can be met. Building on our expertise in advanced optical imaging, we will utilize 3D laser scanning technology developed in our lab and successfully applied by many research groups. To reliably detect single synaptic connections, we will optically activate presumed postsynaptic cells just at firing threshold and presumed pre- synaptic cells well above threshold. Keeping postsynaptic cells at 50% firing probability will result in readily detectable optical signals, maximizing the sensitivity for both discriminating excitatory and inhibitory connections. For concurrent stimulation and recording, we will take advantage of the small two-photon excitation volume. While this effect was seen as an obstacle to recruit sufficient light- activated channels for supra threshold stimulation, we will utilize it to employ a single wavelength to independently stimulate by scanning illumination of cell bodies and record by single-point illumination. Overall, the proposed protocol for determining functional connections by pure optical means is ideally suited for high-throughput functional connectomics. The combined use of multi-photon excitation and 3D laser scanning makes the translation from brain slices to in vivo cortex straightforward.
描述(由申请人提供):使用先进显微镜和光遗传学工具的全光学高通量功能连接图谱我们提出了一种创新的转化方法来绘制神经元群体中细胞之间的功能连接。连接图是分析神经网络的基本步骤。传统上,这种图谱是通过微量移液管对神经元对进行电记录来建立的。最近,已经使用了多补丁方案,需要复杂的设备和高技能的实验人员。目前,高分辨率连接组是通过先进的组织学技术建立的,包括连续切片和电子显微镜,然而,这种方法主要产生解剖图,功能连接的识别仍然很困难。光遗传学工具和双光子显微镜极大地改变了功能连接图谱。例如,表达光激活离子通道的神经元可以在其尖峰阈值之上进行光学去极化,并且可以在连接的细胞中监测突触后信号。最初,采用了混合方法,以光学方式激活突触前神经元,并通过全细胞记录测量突触后信号。最近,人们探索了全光学测绘方法;结合光激活通道以光学诱发活动和光学指示器以监测活动。然而, 当使用全光学方法生成功能连接图时,出现了两个主要挑战:首先,激活单个突触前神经元将在突触后细胞中产生难以检测的光信号,因为这些亚阈值突触后电位不会产生尖峰。其次,同时进行的光刺激和记录通常需要两个单独的激发波长,因此需要两个昂贵的激光器。幸运的是,这两个挑战都可以得到解决。凭借我们在先进光学成像方面的专业知识,我们将利用我们实验室开发并已被许多研究小组成功应用的 3D 激光扫描技术。为了可靠地检测单个突触连接,我们将在激发阈值处光学激活假定的突触后细胞,并在远高于阈值的情况下激活假定的突触前细胞。将突触后细胞保持在 50% 的放电概率将产生易于检测的光学信号,从而最大限度地提高区分兴奋性和抑制性连接的灵敏度。对于并发刺激和记录,我们将利用小的双光子激发体积。虽然这种效应被视为招募足够的光激活通道以实现上述目的的障碍。 阈值刺激,我们将利用它采用单一波长通过细胞体的扫描照明进行独立刺激并通过单点照明进行记录。总体而言,所提出的通过纯光学手段确定功能连接的协议非常适合高通量功能连接组学。多光子激发和 3D 激光扫描的结合使用使得从大脑切片到体内皮层的转换变得简单。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

PETER SAGGAU其他文献

PETER SAGGAU的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('PETER SAGGAU', 18)}}的其他基金

ALL-OPTICAL HIGH-THROUGHPUT FUNCTIONAL CONNECTIVITY MAPPING USING ADVANCED MICROS
使用 Advanced Micros 进行全光高通量功能连接映射
  • 批准号:
    8582420
  • 财政年份:
    2013
  • 资助金额:
    $ 18.98万
  • 项目类别:
Super-resolution Workstation for Imaging Live Biological Nanostructure
用于活体生物纳米结构成像的超分辨率工作站
  • 批准号:
    7945128
  • 财政年份:
    2010
  • 资助金额:
    $ 18.98万
  • 项目类别:
Super-resolution Workstation for Imaging Live Biological Nanostructure
用于活体生物纳米结构成像的超分辨率工作站
  • 批准号:
    8132941
  • 财政年份:
    2010
  • 资助金额:
    $ 18.98万
  • 项目类别:
Optogenetic Tools for in vivo Analysis of Cortical Circuit Plasticity
用于皮层回路可塑性体内分析的光遗传学工具
  • 批准号:
    7695529
  • 财政年份:
    2009
  • 资助金额:
    $ 18.98万
  • 项目类别:
Optogenetic Tools for in vivo Analysis of Cortical Circuit Plasticity
用于皮层回路可塑性体内分析的光遗传学工具
  • 批准号:
    7914333
  • 财政年份:
    2009
  • 资助金额:
    $ 18.98万
  • 项目类别:
Training in Theoretical and Computational Neuroscience
理论和计算神经科学培训
  • 批准号:
    7286915
  • 财政年份:
    2007
  • 资助金额:
    $ 18.98万
  • 项目类别:
Training in Theoretical and Computational Neuroscience
理论和计算神经科学培训
  • 批准号:
    7622154
  • 财政年份:
    2007
  • 资助金额:
    $ 18.98万
  • 项目类别:
Training in Theoretical and Computational Neuroscience
理论和计算神经科学培训
  • 批准号:
    7447333
  • 财政年份:
    2007
  • 资助金额:
    $ 18.98万
  • 项目类别:
Training in Theoretical and Computational Neuroscience
理论和计算神经科学培训
  • 批准号:
    7886513
  • 财政年份:
    2007
  • 资助金额:
    $ 18.98万
  • 项目类别:
Training in Theoretical and Computational Neuroscience
理论和计算神经科学培训
  • 批准号:
    8104229
  • 财政年份:
    2007
  • 资助金额:
    $ 18.98万
  • 项目类别:

相似国自然基金

Sitagliptin通过microbiota-gut-brain轴在2型糖尿病致阿尔茨海默样变中的脑保护作用机制
  • 批准号:
    81801389
  • 批准年份:
    2018
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
平扫描数据导引的超低剂量Brain-PCT成像新方法研究
  • 批准号:
    81101046
  • 批准年份:
    2011
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Resolving the Role of Brain Lymphatic Endothelial Cells in Sleep Dependent Brain Clearance
解决脑淋巴内皮细胞在睡眠依赖性脑清除中的作用
  • 批准号:
    BB/Y001206/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.98万
  • 项目类别:
    Research Grant
Diversity of neural stem cells lineages and temporal scaling in mammalian complex brain formation
哺乳动物复杂大脑形成中神经干细胞谱系的多样性和时间尺度
  • 批准号:
    23H00383
  • 财政年份:
    2023
  • 资助金额:
    $ 18.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Therapeutic strategies for sepsis-associated mental disorders focusing on T cells and neurogenesis in the brain.
脓毒症相关精神障碍的治疗策略重点关注大脑中的 T 细胞和神经发生。
  • 批准号:
    23K08459
  • 财政年份:
    2023
  • 资助金额:
    $ 18.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The role of vascular immune cells in recovery after brain haemorrhage
血管免疫细胞在脑出血后恢复中的作用
  • 批准号:
    2897409
  • 财政年份:
    2023
  • 资助金额:
    $ 18.98万
  • 项目类别:
    Studentship
Immune cells at the blood-brain interface driving concussion-related symptoms
血脑界面的免疫细胞导致脑震荡相关症状
  • 批准号:
    2897591
  • 财政年份:
    2023
  • 资助金额:
    $ 18.98万
  • 项目类别:
    Studentship
Phase I study of B7-H3 targeting CAR-T cells administered by local delivery in paediatric high risk brain tumour patients.
B7-H3 靶向 CAR-T 细胞的 I 期研究通过局部递送在儿科高危脑肿瘤患者中进行。
  • 批准号:
    MR/X030199/1
  • 财政年份:
    2023
  • 资助金额:
    $ 18.98万
  • 项目类别:
    Research Grant
Illuminating neurodegenerative tauopathy from somatic genomic landscapes of single human brain cells
从单个人脑细胞的体细胞基因组景观中阐明神经退行性 tau 病
  • 批准号:
    10686570
  • 财政年份:
    2023
  • 资助金额:
    $ 18.98万
  • 项目类别:
Targeting myeloid cells to increase efficacy of immunotherapy against brain tumors.
靶向骨髓细胞以提高针对脑肿瘤的免疫疗法的功效。
  • 批准号:
    10571040
  • 财政年份:
    2023
  • 资助金额:
    $ 18.98万
  • 项目类别:
The role of oligodendrocyte precursor cells in circuit remodeling in the mature brain
少突胶质细胞前体细胞在成熟脑回路重塑中的作用
  • 批准号:
    10750508
  • 财政年份:
    2023
  • 资助金额:
    $ 18.98万
  • 项目类别:
Brain-targeted delivery of therapeutic molecules by exosomes derived from engineered human iPS cells: a potential therapeutic approach for Huntington's disease
通过源自工程化人类 iPS 细胞的外泌体向大脑靶向递送治疗分子:亨廷顿病的潜在治疗方法
  • 批准号:
    10588392
  • 财政年份:
    2023
  • 资助金额:
    $ 18.98万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了