Optogenetic Tools for in vivo Analysis of Cortical Circuit Plasticity
用于皮层回路可塑性体内分析的光遗传学工具
基本信息
- 批准号:7914333
- 负责人:
- 金额:$ 58.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-15 至 2012-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAdultBehaviorBiological Neural NetworksBrainCellsCerebral cortexDataDevelopmentDimensionsElectroporationFunctional ImagingGlutamatesGoalsImageIn VitroIndividualInjuryIon ChannelKnowledgeLabelLasersLearningMapsMeasuresMethodsMicroscopeMicroscopyMolecularMonitorMusNeuronal PlasticityNeuronsOpticsPatternPlasticsPopulationProcessPropertyProteinsRabies virusRadialRampResearchResearch InfrastructureResearch PersonnelResolutionSamplingScanningSensoryShadowing (Histology)ShapesSiteSliceSourceSpeedSubstance of AbuseSurfaceSynapsesSystemTechnologyTimeTracerTranslatingViralVisual Cortexexperienceimaging modalityin vivointerestlight microscopymethod developmentmulti-photonneural circuitnovelphotolysisplasmid DNApresynapticrelating to nervous systemresponseskillstooltwo-photon
项目摘要
Neuroplasticity is central to fundamental processes in the brain, including learning, and long-lasting changes in neural circuits that result from employing substances of abuse. In contrast to significant advances at the cellular/molecular level, our understanding of the functional organization and reorganization of brain circuits remains limited. Increasing in vivo evidence suggests that single cells remain plastic into and during adulthood. However, our knowledge of the functional properties of single cells is primarily descriptive. This limits our understanding of the underlying mechanisms involved in assembling and modifying neuronal tuning functions during plasticity. In order to understand how the properties of cells change during plasticity, it is imperative to record from a population of interconnected neurons in vivo. More than half of all synaptic contacts in the cortex arise from neurons within a -200 j.lm radius from the target cell. Importantly, connections between cells in the cerebral cortex are predominantly along cortical depth. Therefore, we need to monitor simultaneously the activity of all adjacent neurons in a cortical volume, and thus record in three dimensions. To date, no experimental tool exists that would allows us to do this. This project seeks to establish novel in vivo methods that will allow us to analyze neural circuits in three dimensions. For this purpose, we will advance two technologies to record from and manipulate circuits in the mammalian cortex: (1) Ultra-fast three-dimensional two-photon imaging, and (2) Optical manipulation of neural activity with single-cell and single-spike resolution using optogenetic tools. The proposed developments have become possible because of recent technical advances in ultra-fast multi-photon microscopy and light-activated ion channels. In short: Inertia-free nearinfrared laser scanning technology allows for in vivo fast structural and functional imaging as well as for high resolution optical stimulation. The proposed project will combine these key technologies to generate the infrastructure and the experimental skills to study the function and plasticity of cortical microcircuits and thus will help researchers to understand mechanisms of neuroplasticity in the intact brain.
神经可塑性对于大脑的基本过程至关重要,包括学习,以及由于使用滥用物质而导致的神经回路的持久变化。与细胞/分子水平的重大进展相反,我们对功能组织的理解和脑电路的重组仍然有限。体内越来越多的证据表明,单个细胞在成年期保持塑性。但是,我们对单细胞功能特性的了解主要是描述性的。这限制了我们对在可塑性过程中组装和修改神经元调整功能所涉及的潜在机制的理解。为了了解可塑性期间细胞的特性如何变化,必须从体内记录相互联系的神经元群体。皮质中所有突触接触的一半以上是来自目标细胞的-200 j.lm半径内的神经元。重要的是,大脑皮层中细胞之间的连接主要沿皮质深度。因此,我们需要同时监测皮质体积中所有相邻神经元的活性,从而在三个维度上记录。迄今为止,尚无实验工具可以使我们能够执行此操作。该项目旨在建立新型的体内方法,使我们能够在三个维度上分析神经回路。为此,我们将推进两种技术,以记录和操纵哺乳动物皮层中的电路:(1)使用光学遗传学工具使用单细胞和单尖峰分辨率的神经活动进行超快速的三维两二维两光子成像。由于超快速多光子显微镜和光激活的离子通道的最新技术进步,提出的发展变得可能成为可能。简而言之:无惯性近红外激光扫描技术允许体内快速结构和功能成像以及高分辨率光学刺激。拟议的项目将结合这些关键技术,以生成基础设施和实验技能,以研究皮质微电路的功能和可塑性,从而帮助研究人员了解完整大脑中神经可塑性的机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PETER SAGGAU其他文献
PETER SAGGAU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PETER SAGGAU', 18)}}的其他基金
ALL-OPTICAL HIGH-THROUGHPUT FUNCTIONAL CONNECTIVITY MAPPING USING ADVANCED MICROS
使用 Advanced Micros 进行全光高通量功能连接映射
- 批准号:
8675233 - 财政年份:2013
- 资助金额:
$ 58.88万 - 项目类别:
ALL-OPTICAL HIGH-THROUGHPUT FUNCTIONAL CONNECTIVITY MAPPING USING ADVANCED MICROS
使用 Advanced Micros 进行全光高通量功能连接映射
- 批准号:
8582420 - 财政年份:2013
- 资助金额:
$ 58.88万 - 项目类别:
Super-resolution Workstation for Imaging Live Biological Nanostructure
用于活体生物纳米结构成像的超分辨率工作站
- 批准号:
7945128 - 财政年份:2010
- 资助金额:
$ 58.88万 - 项目类别:
Super-resolution Workstation for Imaging Live Biological Nanostructure
用于活体生物纳米结构成像的超分辨率工作站
- 批准号:
8132941 - 财政年份:2010
- 资助金额:
$ 58.88万 - 项目类别:
Optogenetic Tools for in vivo Analysis of Cortical Circuit Plasticity
用于皮层回路可塑性体内分析的光遗传学工具
- 批准号:
7695529 - 财政年份:2009
- 资助金额:
$ 58.88万 - 项目类别:
Training in Theoretical and Computational Neuroscience
理论和计算神经科学培训
- 批准号:
7286915 - 财政年份:2007
- 资助金额:
$ 58.88万 - 项目类别:
Training in Theoretical and Computational Neuroscience
理论和计算神经科学培训
- 批准号:
7622154 - 财政年份:2007
- 资助金额:
$ 58.88万 - 项目类别:
Training in Theoretical and Computational Neuroscience
理论和计算神经科学培训
- 批准号:
7447333 - 财政年份:2007
- 资助金额:
$ 58.88万 - 项目类别:
Training in Theoretical and Computational Neuroscience
理论和计算神经科学培训
- 批准号:
7886513 - 财政年份:2007
- 资助金额:
$ 58.88万 - 项目类别:
Training in Theoretical and Computational Neuroscience
理论和计算神经科学培训
- 批准号:
8104229 - 财政年份:2007
- 资助金额:
$ 58.88万 - 项目类别:
相似国自然基金
儿童期受虐经历影响成年人群幸福感:行为、神经机制与干预研究
- 批准号:32371121
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
基于行为整合理论的成人睡眠素养提升机制及实证研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于行为整合理论的成人睡眠素养提升机制及实证研究
- 批准号:72204117
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
羽毛球运动对成人视运动知觉可塑性的影响:行为和神经机制研究
- 批准号:31471003
- 批准年份:2014
- 资助金额:70.0 万元
- 项目类别:面上项目
社区医务人员干预成人超重和肥胖的行为机制:基于计划行为理论的实证研究
- 批准号:71303250
- 批准年份:2013
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Advancing Medical Illustration in Patient Education Materials: from Art to Science
推进患者教育材料中的医学插图:从艺术到科学
- 批准号:
10660634 - 财政年份:2023
- 资助金额:
$ 58.88万 - 项目类别:
p16INK4a+ fibroblasts regulate epithelial regeneration after injury in lung alveoli through the SASP
p16INK4a成纤维细胞通过SASP调节肺泡损伤后的上皮再生
- 批准号:
10643269 - 财政年份:2023
- 资助金额:
$ 58.88万 - 项目类别:
Activity-dependent endocannabinoid control in epilepsy
癫痫的活动依赖性内源性大麻素控制
- 批准号:
10639147 - 财政年份:2023
- 资助金额:
$ 58.88万 - 项目类别:
Understanding the effects of cross-sex hormone therapy on vaginal mucosal immunity
了解跨性别激素治疗对阴道粘膜免疫的影响
- 批准号:
10749174 - 财政年份:2023
- 资助金额:
$ 58.88万 - 项目类别: