Validation of acoustic tweezers for single-cell analyses of purine metabolism
声镊对嘌呤代谢单细胞分析的验证
基本信息
- 批准号:8934114
- 负责人:
- 金额:$ 34.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-26 至 2016-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcousticsAddressAdvanced DevelopmentAffectAnabolismArchitectureBiochemistryBiocompatibleBiological ProcessBiologyBiomechanicsBiomedical EngineeringCalciumCancer BiologyCell CommunicationCell Culture SystemCell Culture TechniquesCell divisionCell modelCell physiologyCell-Cell AdhesionCellsChemicalsCommunicationCommunitiesComplexDataDevelopmental BiologyDevicesDisciplineDiseaseDisease modelDrug TargetingEnzymesEventFibroblastsFluorescent DyesFrequenciesGap JunctionsGenerationsGenotypeGoalsHealthHeterogeneityImmuneImmunofluorescence ImmunologicIndividualInfectionInfectious Disease ImmunologyInvestigationLabelLesch-Nyhan SyndromeMediatingMetabolicMetabolic PathwayMicrofluidicsModelingMonitorMultienzyme ComplexesNervous system structureNeuronsNeurosciencesNormal CellPharmacologic SubstancePhenotypePlayPopulationProcessPurinesResearchResearch PersonnelRoleSignal TransductionStatistical ModelsSurfaceSuspension substanceSuspensionsTechniquesTechnologyTuberculosisUltrasonographyValidationWorkanalytical toolbasebiological systemsbiomaterial compatibilityexperienceimprovedinsightintercellular communicationmacrophagenanosystemspathogenpluripotencypressurepurinepurine metabolismresearch studyscale upsimulationsingle cell analysisspatiotemporalsubmicrontool
项目摘要
DESCRIPTION: The lack of a single-cell manipulation technique that can simultaneously achieve high throughput, high precision, and high cell integrity is a major roadblock for studies of intercellular communication. Recently, our interdisciplinary team has developed a surface acoustic wave (SAW)-based microfluidic platform called "acoustic tweezers" that possesses significant advantages over existing cell-manipulation techniques for single-cell analysis. Our acoustic tweezers platform is able to modulate the distances between individual cells with sub-micron precision. In addition, it is highly scalable and capable of creating a large array of celluar arrangements for high-throughput studies. Cells do not need to be labelled and can be cultured in their native media. Furthermore, the acoustic power and frequency used to manipulate cells are in the same range as those used in ultrasonic imaging, which has proven to be highly biocompatible. Finally, the components required for SAW generation are small and inexpensive, and the device itself is easy to operate. With these advantages, the acoustic tweezers are groundbreaking in their ability to provide precise spatiotemporal control of intracellular communication at the single-cell level in a high-throughput manner while preserving cell integrity. The transformative potential of acoustic tweezers has already been demonstrated in studies on gap junction-mediated functional intercellular communication in several homotypic and heterotypic cell populations by visualizing the transfer of fluorescent dyes between cells. Our objective in this project is to conduct advanced development of acoustic tweezers and validate them in studies on the effects of intercellular communication on metabolic pathways within the cell. We will, therefore, pursue the following specific aims: (1) advanced development of acoustic tweezers for high-yield, high-throughput characterization of intercellular communication and purinosome assembly at the single-cell level; (2) multi-parametric investigation of purinosome assembly in a primary cell model using acoustic tweezers; and (3) single-cell analyses of purinosome assembly and purine metabolism in a neuronal model using acoustic tweezers. At the completion of the proposed project, we hope to uncover the mechanism for how a genotype affects complex phenotype using Lesch-Nyhan disease (LND) as the disease model and purinosome as an indicator of metabolic state. Due to its unique ability to create multicellular assemblies with prescribed architectures in high throughput, we expect that the acoustic tweezers will become an invaluable tool for single-cell analysis and will fulfill many unmet needs in the bioengineering, biomedical, and pharmaceutical research communities.
描述:缺乏同时实现高吞吐量、高精度和高细胞完整性的单细胞处理技术是细胞间通信研究的主要障碍。最近,我们的跨学科团队开发了一种基于表面声波(SAW)的微流控平台,称为“声波镊子”,与现有的用于单细胞分析的细胞操纵技术相比,具有显著的优势。我们的声镊子平台能够以亚微米精度调节单个细胞之间的距离。此外,它具有高度可伸缩性,能够为高通量研究创建大量细胞排列。细胞不需要标记,可以在其自然培养基中培养。此外,用于操纵细胞的声功率和频率与用于超声成像的声功率和频率在相同的范围内,这已被证明具有高度的生物兼容性。最后,产生声表面波所需的部件体积小,价格便宜,而且设备本身易于操作。凭借这些优势,声波镊子具有开创性的能力,能够以高吞吐量的方式在单细胞水平上提供对细胞内通信的精确时空控制,同时保持细胞的完整性。通过可视化荧光染料在细胞间的转移,声波镊子在几个同型和异型细胞群体中通过缝隙连接介导的细胞间功能通讯的研究已经证明了其转化潜力。我们在这个项目中的目标是进行声波镊子的高级开发,并在细胞间通信对细胞内代谢途径的影响的研究中验证它们。因此,我们将追求以下具体目标:(1)先进的声波镊子的发展,用于在单细胞水平上高产量、高通量地表征细胞间通信和嘌呤小体组装;(2)使用声波镊子对初级细胞模型中的嘌呤小体组装进行多参数研究;以及(3)使用声波镊子对神经元模型中的嘌呤小体组装和嘌呤代谢进行单细胞分析。在拟议的项目完成后,我们希望以Lesch-Nyhan病(LND)为疾病模型,以嘌呤小体为代谢状态的指示器,揭示基因如何影响复杂表型的机制。由于其独特的能力,可以高通量地创建具有指定结构的多细胞组件,我们预计声波镊子将成为单细胞分析的无价工具,并将满足生物工程、生物医学和制药研究领域的许多未得到满足的需求。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tony Jun Huang其他文献
Tony Jun Huang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tony Jun Huang', 18)}}的其他基金
Automated High-purity Exosome isolation-based AD diagnostics system (AHEADx)
基于自动化高纯度外泌体分离的 AD 诊断系统 (AHEADx)
- 批准号:
10738697 - 财政年份:2023
- 资助金额:
$ 34.42万 - 项目类别:
Acoustofluidic Separation of Placental Nanovesicle Subpopulations in Obstetrical Diseases
产科疾病胎盘纳米囊泡亚群的声流分离
- 批准号:
10625490 - 财政年份:2021
- 资助金额:
$ 34.42万 - 项目类别:
Development of a digital acoustofluidic system for automating liquid handling in biomedical research
开发用于生物医学研究中液体处理自动化的数字声流系统
- 批准号:
10405571 - 财政年份:2021
- 资助金额:
$ 34.42万 - 项目类别:
Development of a digital acoustofluidic system for automating liquid handling in biomedical research
开发用于生物医学研究中液体处理自动化的数字声流系统
- 批准号:
10175836 - 财政年份:2021
- 资助金额:
$ 34.42万 - 项目类别:
Development of a digital acoustofluidic system for automating liquid handling in biomedical research
开发用于生物医学研究中液体处理自动化的数字声流系统
- 批准号:
10689706 - 财政年份:2021
- 资助金额:
$ 34.42万 - 项目类别:
Development of a digital acoustofluidic system for automating liquid handling in biomedical research
开发用于生物医学研究中液体处理自动化的数字声流系统
- 批准号:
10795366 - 财政年份:2021
- 资助金额:
$ 34.42万 - 项目类别:
Acoustofluidic Separation of Placental Nanovesicle Subpopulations in Obstetrical Diseases
产科疾病胎盘纳米囊泡亚群的声流分离
- 批准号:
10418609 - 财政年份:2021
- 资助金额:
$ 34.42万 - 项目类别:
AFS/SERS Saliva-based SARS-CoV-2 Earliest Infection and Antibodies Detection
AFS/SERS 基于唾液的 SARS-CoV-2 最早感染和抗体检测
- 批准号:
10320991 - 财政年份:2020
- 资助金额:
$ 34.42万 - 项目类别:
AFS/SERS Saliva-based SARS-CoV-2 Earliest Infection and Antibodies Detection
AFS/SERS 基于唾液的 SARS-CoV-2 最早感染和抗体检测
- 批准号:
10266399 - 财政年份:2020
- 资助金额:
$ 34.42万 - 项目类别:
Enabling Efficient, Fast, Biocompatible Exosome Separation via Acoustofluidics
通过声流控技术实现高效、快速、生物相容性的外泌体分离
- 批准号:
10171868 - 财政年份:2019
- 资助金额:
$ 34.42万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 34.42万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 34.42万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 34.42万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 34.42万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 34.42万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 34.42万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 34.42万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 34.42万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 34.42万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 34.42万 - 项目类别:
Research Grant