Proteasome Regulation and Function in Cellular Remodeling
细胞重塑中的蛋白酶体调节和功能
基本信息
- 批准号:8921207
- 负责人:
- 金额:$ 35.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-08-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:26S proteasomeADP ribosylationAdenosine Diphosphate RiboseAffectAgeAgingAlzheimer&aposs DiseaseAntibodiesArchitectureBindingBiochemicalBiochemistryBiologicalBortezomibCaloric RestrictionCaspaseCell AgingCell SurvivalCell physiologyCellsCellular StructuresCellular biologyCessation of lifeChemicalsClinicComplexDNA DamageDefectDevelopmentDevelopmental BiologyDiseaseDrosophila genusEnergy MetabolismEukaryotic CellFamilyFoundationsFundingGenerationsGeneticGoalsHealthHomeostasisHumanHuntington DiseaseInsectaJointsLinkMalignant NeoplasmsMammalian CellMantle Cell LymphomaMediatingMetabolicMetabolismModelingMolecularMolecular BiologyMultiple MyelomaMuscleMyopathyNerve DegenerationNeurobiologyNeurodegenerative DisordersNeuronsNicotinamide adenine dinucleotideOrganismParkinson DiseasePathway interactionsPhysiologicalPlayPoly(ADP-ribose) PolymerasesProcessProteasome InhibitorProteinsRegulationRetinitis PigmentosaRoleShapesSiteSourceStressStructureSystemTankyraseTestingTimeTransferaseUbiquitinVelcadeVertebratesWorkage relatedagedalpha synucleincancer cachexiacell agecell typedietary restrictionflyhuman diseaseinhibitor/antagonistinsightloss of functionmembermulticatalytic endopeptidase complexmutantnovelnovel therapeuticsprogramsprotein degradationresearch studyresponsesmall moleculesperm celltool
项目摘要
DESCRIPTION (provided by applicant): The selective degradation of intracellular proteins is of central importance for the generation, function and survival of eukaryotic cells. The ubiquitin-proteasome system (UPS) is responsible for the controlled degradation of most intracellular proteins, and abnormal regulation of the UPS is associated with a variety of human diseases, including cancer, myopathies, and neurodegenerative disorders. Although dramatic progress has been made in understanding the structure and function of proteasomes, we still know extremely little about how proteasome activity is dynamically regulated in time and space. The activity of the 26S proteasome declines with age, but the underlying molecular mechanisms remain unknown. Our prior work focused on the regulation of caspases by the UPS, and results obtained during the current funding cycle revealed the joint use of proteasomes and caspases in the "controlled demolition" of cellular structures that is needed for terminal sperm differentiatio in Drosophila. Similar mechanisms are thought to mediate the remodeling of other cell types, including neurons and muscle, in both insects and vertebrates. The overall goal of this project is to understand how proteasomes are regulated to promote changes in the cyto architecture, size and survival of cells, and how this process affects age-related neuronal degeneration. We recently discovered a novel proteasome regulatory mechanism that offers unique opportunities to study proteasome regulation in the context of both normal organismal development, and in response to stress and aging. In particular, we found that the ADP-ribosyl transferase Tankyrase (TNKS) binds to and critically activates the proteasome regulator PI31 (Proteasome Inhibitor of 31kDa) to promote 26S proteasome assembly. These results suggest a potential mechanistic link between energy metabolism, NAD+, DNA-damage and proteasome regulation that is likely to play important roles in development, protein homeostasis and aging. Here, we will investigate the biological role and regulation of TNKS/PI31-mediated proteasome activation. We propose to use a multi-disciplinary approach that integrates Drosophila genetics, developmental biology, cell biology, and neurobiology, biochemistry, and small- molecule chemical inhibitors. Amongst other things, we will test the specific hypotheses that the TNKS/PI31-pathway is regulated by NAD+ that activation of this pathway protects against phototoxic stress and that diminished activity of this pathway with age causes increased vulnerability to neuronal degeneration. The current proposal brings, for the first time, the full power of Drosophila genetics and molecular biology to investigate these questions and combines it with biochemical studies in both insect and mammalian cells to explore new paths towards the clinic. We expect that this project will fundamentally advance our understanding of how protein degradation is regulated and provide new insights how to manipulate this process for the treatment of human diseases.
描述(由申请人提供):细胞内蛋白的选择性降解对于真核细胞的产生,功能和存活至关重要。泛素 - 蛋白酶体系统(UPS)负责大多数细胞内蛋白的受控降解,UPS的异常调节与多种人类疾病有关,包括癌症,肌病和神经退行性疾病。尽管在理解蛋白酶体的结构和功能方面取得了巨大的进步,但我们仍然对蛋白酶体活动在时间和空间中的动态调节程度了解甚少。 26S蛋白酶体的活性随着年龄的增长而下降,但潜在的分子机制仍然未知。我们先前的工作集中于UPS对胱天蛋白酶的调节,并在当前的资金周期中获得的结果表明,在果蝇中末端精子差异所需的“受控拆除”中蛋白酶体和胱天蛋白酶的联合使用。人们认为类似的机制可以介导昆虫和脊椎动物中其他细胞类型的重塑,包括神经元和肌肉。该项目的总体目标是了解如何调节蛋白酶体以促进细胞体结构,细胞的大小和存活的变化,以及该过程如何影响与年龄相关的神经元变性。最近,我们发现了一种新型的蛋白酶体调节机制,该机制在正常有机体发育和响应压力和衰老的背景下为研究蛋白酶体调节提供了独特的机会。特别是,我们发现ADP-核糖基转移酶坦克酶(TNK)与蛋白酶体调节剂PI31(31KDA的蛋白酶体抑制剂)结合并严格激活,以促进26S蛋白酶体组装。这些结果表明能量代谢,NAD+,DNA破坏和蛋白酶体调节之间可能在发育,蛋白质稳态和衰老中起重要作用。在这里,我们将研究TNK/PI31介导的蛋白酶体激活的生物学作用和调节。我们建议使用一种多学科方法,该方法整合果蝇遗传学,发育生物学,细胞生物学和神经生物学,生物化学和小分子化学抑制剂。除其他事项外,我们将测试特定的假设,即TNK/PI31-Pathway受NAD+的调节,即该途径的激活可以防止光毒性应激,并且该途径随着年龄的增长而导致该途径的降低会增加对神经元变性的脆弱性。当前的建议首次提出了果蝇遗传学和分子生物学的全部力量,以研究这些问题,并将其与昆虫和哺乳动物细胞中的生化研究结合在一起,以探索通往诊所的新路径。我们希望该项目从根本上可以提高我们对如何调节蛋白质降解的理解,并提供新的见解,如何操纵这一过程以治疗人类疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HERMANN STELLER其他文献
HERMANN STELLER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HERMANN STELLER', 18)}}的其他基金
TARGETING OF PROTEINS TO THE PROTEASOME DURING SPERMATOGENESIS
精子发生过程中蛋白质靶向蛋白酶体
- 批准号:
8361537 - 财政年份:2011
- 资助金额:
$ 35.48万 - 项目类别:
TARGETING OF PROTEINS TO THE PROTEASOME DURING SPERMATOGENESIS
精子发生过程中蛋白质靶向蛋白酶体
- 批准号:
8169166 - 财政年份:2010
- 资助金额:
$ 35.48万 - 项目类别:
TARGETING OF PROTEINS TO THE PROTEASOME DURING SPERMATOGENESIS
精子发生过程中蛋白质靶向蛋白酶体
- 批准号:
7954135 - 财政年份:2009
- 资助金额:
$ 35.48万 - 项目类别:
TARGETING OF PROTEINS TO THE PROTEASOME DURING SPERMATOGENESIS
精子发生过程中蛋白质靶向蛋白酶体
- 批准号:
7722284 - 财政年份:2008
- 资助金额:
$ 35.48万 - 项目类别:
Regulation of Apoptosis by Mitochondrial Septins, ARTS
线粒体脓毒症对细胞凋亡的调节,ARTS
- 批准号:
6449943 - 财政年份:2001
- 资助金额:
$ 35.48万 - 项目类别:
Regulation of Apoptosis by Mitochondrial Septins, ARTS
线粒体脓毒症对细胞凋亡的调节,ARTS
- 批准号:
6540864 - 财政年份:2001
- 资助金额:
$ 35.48万 - 项目类别:
Regulation of Apoptosis by Mitochondrial Septins, ARTS
线粒体脓毒症对细胞凋亡的调节,ARTS
- 批准号:
6640003 - 财政年份:2001
- 资助金额:
$ 35.48万 - 项目类别:
CONTROL OF APOPTOSIS BY DROSOPHILA CELL DEATH GENES
果蝇细胞死亡基因对细胞凋亡的控制
- 批准号:
6526182 - 财政年份:1999
- 资助金额:
$ 35.48万 - 项目类别:
Control of Apoptosis by Drosophila Cell Death Genes
果蝇细胞死亡基因对细胞凋亡的控制
- 批准号:
8018069 - 财政年份:1999
- 资助金额:
$ 35.48万 - 项目类别:
Control of Apoptosis by Drosophila Cell Death Genes
果蝇细胞死亡基因对细胞凋亡的控制
- 批准号:
8212384 - 财政年份:1999
- 资助金额:
$ 35.48万 - 项目类别:
相似国自然基金
细胞核PD-L1的ADP核糖基化修饰调控肝癌细胞免疫逃逸的分子机制
- 批准号:82372806
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
DNA损伤应答过程中p53的多聚ADP核糖基化修饰及转录激活功能的研究
- 批准号:32301212
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ADP-核糖基化生物功能和作用机制探究
- 批准号:22377146
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
PARP4通过ADP核糖基化PIPs促进结直肠癌恶性进展的机制研究
- 批准号:82203272
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
PARP4通过ADP核糖基化PIPs促进结直肠癌恶性进展的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
DeADP-ribosylation of host targets mediated by a bacterial effector
由细菌效应子介导的宿主靶标的 DeADP-核糖基化
- 批准号:
10667971 - 财政年份:2023
- 资助金额:
$ 35.48万 - 项目类别:
PARP1 and PARylation as novel effectors of gut inflammation
PARP1 和 PARylation 作为肠道炎症的新型效应物
- 批准号:
10679646 - 财政年份:2023
- 资助金额:
$ 35.48万 - 项目类别:
Understanding the impact of DNA ADP-ribosylation on telomere function in cancer cells
了解 DNA ADP-核糖基化对癌细胞端粒功能的影响
- 批准号:
10751121 - 财政年份:2023
- 资助金额:
$ 35.48万 - 项目类别:
Chemical Biology-Based Tools to Uncover the Function of PARP16 in cancer
基于化学生物学的工具揭示 PARP16 在癌症中的功能
- 批准号:
10750279 - 财政年份:2023
- 资助金额:
$ 35.48万 - 项目类别: