Semi-structured Information Retrieval in Clinical Text for Cohort Identification
用于队列识别的临床文本中的半结构化信息检索
基本信息
- 批准号:8811565
- 负责人:
- 金额:$ 46.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-20 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAdoptedAdoptionAsthmaClinicClinicalCollectionCommunitiesComputerized Medical RecordComputersDataDictionaryDiseaseElectronic Health RecordEpidemiologistEpidemiologyEvaluationEventEvidence Based MedicineEvolutionGoalsHealthInformation RetrievalInformation Retrieval SystemsInstitutionInterest GroupInvestigationJudgmentLanguageLearningMachine LearningMeasuresMedicalMedical RecordsMethodologyMethodsMetricModelingModificationMorphologic artifactsNamesNatural Language ProcessingOutcomePatient RecruitmentsPatientsPerformancePharmaceutical PreparationsPhasePhysiciansProcessPublishingQualifyingRecordsResearchResearch PersonnelResourcesRestRetrievalSamplingSemanticsSiteSmokeSourceSpecific qualifier valueStructureSystemTechniquesTestingTextValidationWeightWorkWritingasthmatic patientbasecohortimprovedindexingnovelopen sourcepublic health relevancesyntaxtext searchingtool
项目摘要
DESCRIPTION (provided by applicant): Natural Language Processing (NLP) techniques have shown promise for extracting data from the free text of electronic health records (EHRs), but studies have consistently found that techniques do not readily generalize across application settings. Unfortunately, most of the focus in applying NLP to real use cases has remained on a paradigm of single, well-defined application settings, so that generalizability to unseen use cases remains implicitly unaddressed. We propose to explicitly account for unseen application settings by adopting an information retrieval (IR) perspective with the objective of patient-level cohort identification. To do so, we introduce layered language models, an IR framework that enables the reuse of NLP-produced artifacts. Our long term goal is to accelerate investigations of patient health and disease by providing robust, user- centric tools that are necessary to process, retrieve, and utilize the free text of EHRs. The main goal of this proposal is to accurately retrieve ad hoc, realistic cohorts from clinical text at Mayo Clinic and OHSU, establishing methods, resources, and evaluation for patient-level IR. We hypothesize that cohort identification can be addressed in a generalizable fashion by a new IR framework: layered language models. We will test this hypothesis through four specific aims. In Aim 1, we will make medical NLP artifacts searchable in our layered language IR framework. This involves storing and indexing the NLP artifacts, as well as using statistical language models to retrieve documents based on text and its associated NLP artifacts. In Aim 2, we deal with the practical setting of ad hoc cohort identification, moving to patient-level (rather than document-level) IR. To accurately handle patient cohorts in which qualifying evidence may be spread over multiple documents, we will develop and implement patient-level retrieval models that account for cross- document relational and temporal combinations of events. In Aim 3, we will construct parallel IR test collections using EHR data from two sites; a diverse set of cohort queries written by multiple
people toward various clinical or epidemiological ends; and assessments of which patients are relevant to which queries at both sites. Finally, in Aim 4, we refine and evaluate patient-level layered language IR on the ad hoc cohort identification task, making comparisons across the users, queries, optimization metrics, and institutions. We will draw additional extrinsic comparisons with pre-existing techniques, e.g., for cohorts from the Electronic Medical Records and Genonmics network. The expected outcomes of the proposed work are: (i) An open-source cohort identification tool, usable by clinicians and epidemiologists, that makes principled use of NLP artifacts for unseen queries; ii) A parallel test collection for cohort identification, includig two intra-institutional document collections, diverse test topics and user-produced text queries, and patient-level judgments of relevance to each query; and (iii) Validation of the reusability of medical NLP via the task of retrieving patient cohorts.
描述(由申请人提供):自然语言处理 (NLP) 技术已显示出从电子健康记录 (EHR) 的自由文本中提取数据的前景,但研究一致发现该技术不易在应用程序设置中推广。不幸的是,将 NLP 应用于实际用例的大部分重点仍然停留在单一的、定义良好的应用程序设置范例上,因此对未见过的用例的通用性仍然隐含地没有得到解决。我们建议通过采用信息检索(IR)视角来明确解释不可见的应用程序设置,以实现患者级别队列识别的目标。为此,我们引入了分层语言模型,这是一个能够重用 NLP 生成的工件的 IR 框架。我们的长期目标是通过提供处理、检索和利用 EHR 自由文本所必需的强大的、以用户为中心的工具来加速对患者健康和疾病的调查。该提案的主要目标是从 Mayo Clinic 和 OHSU 的临床文本中准确检索临时、现实的队列,建立患者级 IR 的方法、资源和评估。我们假设队列识别可以通过新的 IR 框架(分层语言模型)以通用的方式解决。我们将通过四个具体目标来检验这一假设。在目标 1 中,我们将在分层语言 IR 框架中使医学 NLP 工件可搜索。这涉及存储和索引 NLP 工件,以及使用统计语言模型来检索基于文本及其相关 NLP 工件的文档。在目标 2 中,我们处理临时队列识别的实际设置,转向患者级别(而不是文档级别)IR。为了准确处理合格证据可能分布在多个文档中的患者群体,我们将开发和实施患者级检索模型,该模型考虑了事件的跨文档关系和时间组合。在目标 3 中,我们将使用来自两个站点的 EHR 数据构建并行 IR 测试集合;由多个人编写的一组不同的队列查询
人们朝着不同的临床或流行病学目的;以及评估哪些患者与两个站点的哪些查询相关。最后,在目标 4 中,我们在临时队列识别任务上完善和评估患者级分层语言 IR,对用户、查询、优化指标和机构进行比较。我们将与现有技术进行额外的外部比较,例如来自电子病历和基因组学网络的队列。拟议工作的预期成果是:(i)一个可供临床医生和流行病学家使用的开源队列识别工具,原则上使用 NLP 工件来处理未见过的查询; ii) 用于队列识别的并行测试集合,包括两个机构内文档集合、不同的测试主题和用户生成的文本查询,以及与每个查询相关的患者级别判断; (iii) 通过检索患者队列的任务验证医学 NLP 的可重用性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HONGFANG LIU其他文献
HONGFANG LIU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HONGFANG LIU', 18)}}的其他基金
Learning Precision Medicine for Rare Diseases Empowered by Knowledge-driven Data Mining
通过知识驱动的数据挖掘学习罕见疾病的精准医学
- 批准号:
10732934 - 财政年份:2023
- 资助金额:
$ 46.07万 - 项目类别:
The Data, Evaluation, and Coordination Center (DECC) for Connecting Underrepresented Populations to Clinical Trials (CUSP2CT)
用于将代表性不足的人群与临床试验联系起来的数据、评估和协调中心 (DECC) (CUSP2CT)
- 批准号:
10597291 - 财政年份:2022
- 资助金额:
$ 46.07万 - 项目类别:
Secondary use of EMRs for surgical complication surveillance
EMR 二次用于手术并发症监测
- 批准号:
10202598 - 财政年份:2015
- 资助金额:
$ 46.07万 - 项目类别:
Secondary use of EMRs for surgical complication surveillance
EMR 二次用于手术并发症监测
- 批准号:
10001498 - 财政年份:2015
- 资助金额:
$ 46.07万 - 项目类别:
Secondary use of EMRs for surgical complication surveillance
二次使用 EMR 进行手术并发症监测
- 批准号:
9251814 - 财政年份:2015
- 资助金额:
$ 46.07万 - 项目类别:
Secondary use of EMRs for surgical complication surveillance
EMR 二次用于手术并发症监测
- 批准号:
10471838 - 财政年份:2015
- 资助金额:
$ 46.07万 - 项目类别:
Semi-structured Information Retrieval in Clinical Text for Cohort Identification
用于队列识别的临床文本中的半结构化信息检索
- 批准号:
8928647 - 财政年份:2014
- 资助金额:
$ 46.07万 - 项目类别:
Natural language processing for clinical and translational research
用于临床和转化研究的自然语言处理
- 批准号:
9033918 - 财政年份:2013
- 资助金额:
$ 46.07万 - 项目类别:
Natural language processing for clinical and translational research
用于临床和转化研究的自然语言处理
- 批准号:
8640959 - 财政年份:2013
- 资助金额:
$ 46.07万 - 项目类别:
Natural language processing for clinical and translational research
用于临床和转化研究的自然语言处理
- 批准号:
8920720 - 财政年份:2013
- 资助金额:
$ 46.07万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 46.07万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 46.07万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 46.07万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 46.07万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 46.07万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 46.07万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 46.07万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 46.07万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 46.07万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 46.07万 - 项目类别:
Research Grant














{{item.name}}会员




