Natural language processing for clinical and translational research
用于临床和转化研究的自然语言处理
基本信息
- 批准号:9033918
- 负责人:
- 金额:$ 56.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-04-01 至 2018-03-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAdoptedAdoptionAdverse drug effectAlgorithmsArchitectureAttentionClinicalClinical InvestigatorClinical ResearchCodeCommunitiesComputerized Medical RecordDNA DatabasesDataData SetDevelopmentDictionaryDiscipline of NursingDiseaseDocumentationElementsExclusion CriteriaGenesGenomicsGoalsGrowthHealthInformaticsInstitutionKnowledgeLinkLogical Observation Identifiers Names and CodesManualsMedical EducationModelingNatural Language ProcessingOnset of illnessOutputPatientsPharmacogenomicsPhenotypePlayProcessRadiology SpecialtyReportingResearchResearch PersonnelResearch Project GrantsResourcesRoleSNOMED Clinical TermsSemanticsShoesSiteStatutes and LawsStructureSyndromeSystemTechnologyTextTranslational ResearchTreatment outcomeWorkbaseclinical applicationclinical careclinical phenotypecomputer human interactiondata exchangedata modelingexperiencefinancial incentiveflexibilityhuman centered computinginteroperabilitynovelopen sourcepatient safetyrapid growthsuccesstoolusabilityuser-friendly
项目摘要
DESCRIPTION (provided by applicant): Rapid growth in the clinical implementation of large electronic medical records (EMRs) has led to an unprecedented expansion in the availability of dense longitudinal datasets for clinical and translational research. This growth is being fueled by
recent federal legislation that provides generous financial incentives to institutions demonstrating aggressive application and "meaningful use" of comprehensive EMRs. Efforts are already underway to link these EMRs across institutions, and standardize the definition of phenotypes for large scale studies of disease onset and treatment outcome, specifically within the context of routine clinical care. However, a well-known challenge for secondary use of EMR data for clinical and translational research is that much of detailed patient information is embedded in narrative text. Natural Language Processing (NLP) technologies, which are able to convert unstructured clinical text into coded data, have been introduced into the biomedical domain and have demonstrated promising results. Researchers have used NLP systems to identify clinical syndromes and common biomedical concepts from radiology reports, discharge summaries, problem lists, nursing documentation, and medical education documents. Different NLP systems have been developed at different institutions and utilized to convert clinical narrative text into structured data that may be used for other clinical applications and studies. Successful stories in applying NLP to clinical and translational research have been reported widely. However, institutions often deploy different NLP systems, which produce various types of output formats and make it difficult to exchange information between sites. Therefore, the lack of interoperability among different clinical NLP systems becomes a bottleneck for efficient multi-site studies. In addition, many successful studies often require a strong interdisciplinary team where informaticians and clinicians have to work very closely to iteratively define optimal algorithms for clinical phenotypes. As intensive informatics support may not be available to every clinical researcher, the usability of NLP systems for end users is another important issue. The proposed project builds upon first-hand knowledge and experience across the research team in the use of NLP for clinical and translational research projects. There are several big informatics initiatives for clinical and translational research but those initiatives generally assume one shoe fits all and follow top-down approaches to develop NLP solutions. Complementary to those initiatives, we will use a bottom-up approach to handle interoperability and usability: i) we will obtain a common NLP data model and exchange format through empirical analysis of existing NLP systems and NLP results; ii) we will develop a user-centric NLP front end interface for NLP systems wrapped to be consistent with the proposed NLP data model and exchange format incorporating usability analysis into the agile development process. All deliverables will be distributed through the open health NLP (OHNLP) consortium which we intend to make it more open and inclusive.
描述(由申请人提供):大型电子病历(emr)临床应用的快速增长导致了临床和转化研究密集纵向数据集可用性的前所未有的扩展。这种增长是由
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Clinical decision support with automated text processing for cervical cancer screening.
临床决策支持具有自动化文本处理,用于宫颈癌筛查。
- DOI:10.1136/amiajnl-2012-000820
- 发表时间:2012-09
- 期刊:
- 影响因子:0
- 作者:Wagholikar KB;MacLaughlin KL;Henry MR;Greenes RA;Hankey RA;Liu H;Chaudhry R
- 通讯作者:Chaudhry R
ADEpedia 2.0: Integration of Normalized Adverse Drug Events (ADEs) Knowledge from the UMLS.
ADEpedia 2.0:整合来自 UMLS 的标准化药物不良事件 (ADE) 知识。
- DOI:
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:Jiang,Guoqian;Liu,Hongfang;Solbrig,HaroldR;Chute,ChristopherG
- 通讯作者:Chute,ChristopherG
CATTLE (CAncer treatment treasury with linked evidence): An integrated knowledge base for personalized oncology research and practice.
CATTLE(具有关联证据的癌症治疗宝库):用于个性化肿瘤学研究和实践的综合知识库。
- DOI:10.1002/psp4.12174
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Soysal,E;Lee,H-J;Zhang,Y;Huang,L-C;Chen,X;Wei,Q;Zheng,W;Chang,JT;Cohen,T;Sun,J;Xu,H
- 通讯作者:Xu,H
Assessing the Need of Discourse-Level Analysis in Identifying Evidence of Drug-Disease Relations in Scientific Literature
- DOI:10.3233/978-1-61499-564-7-539
- 发表时间:2018-03
- 期刊:
- 影响因子:0
- 作者:M. Rastegar-Mojarad;R. K. Elayavilli;Dingcheng Li;Hongfang Liu
- 通讯作者:M. Rastegar-Mojarad;R. K. Elayavilli;Dingcheng Li;Hongfang Liu
Open Source Clinical NLP – More than Any Single System
- DOI:
- 发表时间:2014-04
- 期刊:
- 影响因子:0
- 作者:James J. Masanz;Serguei V. S. Pakhomov;Hua Xu;S. Wu;C. Chute;Hongfang Liu
- 通讯作者:James J. Masanz;Serguei V. S. Pakhomov;Hua Xu;S. Wu;C. Chute;Hongfang Liu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HONGFANG LIU其他文献
HONGFANG LIU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HONGFANG LIU', 18)}}的其他基金
Learning Precision Medicine for Rare Diseases Empowered by Knowledge-driven Data Mining
通过知识驱动的数据挖掘学习罕见疾病的精准医学
- 批准号:
10732934 - 财政年份:2023
- 资助金额:
$ 56.28万 - 项目类别:
The Data, Evaluation, and Coordination Center (DECC) for Connecting Underrepresented Populations to Clinical Trials (CUSP2CT)
用于将代表性不足的人群与临床试验联系起来的数据、评估和协调中心 (DECC) (CUSP2CT)
- 批准号:
10597291 - 财政年份:2022
- 资助金额:
$ 56.28万 - 项目类别:
Secondary use of EMRs for surgical complication surveillance
EMR 二次用于手术并发症监测
- 批准号:
10202598 - 财政年份:2015
- 资助金额:
$ 56.28万 - 项目类别:
Secondary use of EMRs for surgical complication surveillance
EMR 二次用于手术并发症监测
- 批准号:
10001498 - 财政年份:2015
- 资助金额:
$ 56.28万 - 项目类别:
Secondary use of EMRs for surgical complication surveillance
二次使用 EMR 进行手术并发症监测
- 批准号:
9251814 - 财政年份:2015
- 资助金额:
$ 56.28万 - 项目类别:
Secondary use of EMRs for surgical complication surveillance
EMR 二次用于手术并发症监测
- 批准号:
10471838 - 财政年份:2015
- 资助金额:
$ 56.28万 - 项目类别:
Semi-structured Information Retrieval in Clinical Text for Cohort Identification
用于队列识别的临床文本中的半结构化信息检索
- 批准号:
8928647 - 财政年份:2014
- 资助金额:
$ 56.28万 - 项目类别:
Semi-structured Information Retrieval in Clinical Text for Cohort Identification
用于队列识别的临床文本中的半结构化信息检索
- 批准号:
8811565 - 财政年份:2014
- 资助金额:
$ 56.28万 - 项目类别:
Natural language processing for clinical and translational research
用于临床和转化研究的自然语言处理
- 批准号:
8640959 - 财政年份:2013
- 资助金额:
$ 56.28万 - 项目类别:
Natural language processing for clinical and translational research
用于临床和转化研究的自然语言处理
- 批准号:
8920720 - 财政年份:2013
- 资助金额:
$ 56.28万 - 项目类别:
相似海外基金
How novices write code: discovering best practices and how they can be adopted
新手如何编写代码:发现最佳实践以及如何采用它们
- 批准号:
2315783 - 财政年份:2023
- 资助金额:
$ 56.28万 - 项目类别:
Standard Grant
One or Several Mothers: The Adopted Child as Critical and Clinical Subject
一位或多位母亲:收养的孩子作为关键和临床对象
- 批准号:
2719534 - 财政年份:2022
- 资助金额:
$ 56.28万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633211 - 财政年份:2020
- 资助金额:
$ 56.28万 - 项目类别:
Studentship
A material investigation of the ceramic shards excavated from the Omuro Ninsei kiln site: Production techniques adopted by Nonomura Ninsei.
对大室仁清窑遗址出土的陶瓷碎片进行材质调查:野野村仁清采用的生产技术。
- 批准号:
20K01113 - 财政年份:2020
- 资助金额:
$ 56.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2436895 - 财政年份:2020
- 资助金额:
$ 56.28万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633207 - 财政年份:2020
- 资助金额:
$ 56.28万 - 项目类别:
Studentship
The limits of development: State structural policy, comparing systems adopted in two European mountain regions (1945-1989)
发展的限制:国家结构政策,比较欧洲两个山区采用的制度(1945-1989)
- 批准号:
426559561 - 财政年份:2019
- 资助金额:
$ 56.28万 - 项目类别:
Research Grants
Securing a Sense of Safety for Adopted Children in Middle Childhood
确保被收养儿童的中期安全感
- 批准号:
2236701 - 财政年份:2019
- 资助金额:
$ 56.28万 - 项目类别:
Studentship
A Study on Mutual Funds Adopted for Individual Defined Contribution Pension Plans
个人设定缴存养老金计划采用共同基金的研究
- 批准号:
19K01745 - 财政年份:2019
- 资助金额:
$ 56.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structural and functional analyses of a bacterial protein translocation domain that has adopted diverse pathogenic effector functions within host cells
对宿主细胞内采用多种致病效应功能的细菌蛋白易位结构域进行结构和功能分析
- 批准号:
415543446 - 财政年份:2019
- 资助金额:
$ 56.28万 - 项目类别:
Research Fellowships














{{item.name}}会员




