Structure and stability of 3_alpha vs alpha_beta folds

3_alpha 与 alpha_beta 折叠的结构和稳定性

基本信息

  • 批准号:
    8665434
  • 负责人:
  • 金额:
    $ 30.78万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-03-01 至 2017-03-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Most proteins conform to the classical view that a polypeptide chain populates a single, stable native state. However, the phenomenon of fold switching, where protein sequences can exist at the interface between completely different folds, creates serious challenges to our understanding of how amino acid sequence encodes 3D structure. Additionally, it has many implications for understanding how proteins evolve, how mutation is related to disease, and how function is annotated to sequences of unknown structure. Here, the overall objective is to determine experimentally how amino acid sequences migrate through fold space. We will determine the generality of fold switching and define its common principles by designing, engineering and analyzing a number of strategic protein switches. Our proposed studies employ small proteins that are widely used in experimental and computational folding studies, connecting our future results to a large body of knowledge. We aim to show that: 1) many folds can switch into other completely different topologies; 2) such switches can be designed/evolved; 3) structures and energetics of switches can be understood; 4) understanding can lead to prediction of other switches. Previous examination of both natural and engineered fold switches has shown that three conditions are generally necessary for a fold switch: 1) low stability of both folds; 2) compatibility of hydrophobic cores between folds; and 3) long range interactions in one fold which can override local interactions in the other. Methodical studies of fold switching require design and selection methods robust enough to create multiple examples of switches. To create different switches, we have chosen a series of origin folds that represent a range of common topologies (orthogonal bundle, 3-helix bundle, ¿- grasp, SH3 barrel) that will be switched into different context-driven, destination folds (¿/¿ plait, ¿/¿ sandwich, Rossman-like). This approach allows us to satisfy the three general conditions of switching mentioned above. It also mimics evolutionary migration of sub-domains through fold space. Selection through the use of phage display methods will produce heteromorphic and bi-functional proteins that will be used for structural and energetic analysis. These proteins will be studied by a variety of physical methods including microcalorimetry, CD and NMR. Detailed structural and thermodynamic analysis will give important insights into the physicochemical basis for fold switching. The energetic and structural results will reveal how multiple folds are connected through short mutational pathways. These mutational connectivities in fold space will create networks of probable fold migrations. Our results will also enable computational biologists to use these data in folding simulations, fold network studies, and for further development and refinement of stability and structure prediction algorithms.
描述(由申请人提供):大多数蛋白质符合经典观点,即多肽链具有单一,稳定的天然状态。然而,折叠切换现象,即蛋白质序列可以存在于完全不同折叠之间的界面,对我们理解氨基酸序列如何编码3D结构产生了严重的挑战。此外,它对理解蛋白质如何进化,突变如何与疾病相关以及功能如何注释到未知结构的序列具有许多意义。在这里,总体目标是通过实验确定氨基酸序列如何通过折叠空间迁移。我们将通过设计、工程和分析一些战略性蛋白质开关来确定折叠开关的普遍性,并定义其共同原理。我们提出的研究采用广泛用于实验和计算折叠研究的小蛋白质,将我们未来的结果与大量知识联系起来。我们的目标是证明:1)许多折叠可以转换成其他完全不同的拓扑结构;2)这种开关可以设计/进化;3)了解开关的结构和能量学;4)理解可以导致其他开关的预测。先前对天然折叠开关和工程折叠开关的研究表明,折叠开关通常需要三个条件:1)两种折叠的低稳定性;2)疏水核在褶皱间的相容性;和3)

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

PHILIP N BRYAN其他文献

PHILIP N BRYAN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('PHILIP N BRYAN', 18)}}的其他基金

Selection system for identifying protein-specific folding tags that enable purification of native cytokines from E. coli
用于识别蛋白质特异性折叠标签的选择系统,从而能够从大肠杆菌中纯化天然细胞因子
  • 批准号:
    10256900
  • 财政年份:
    2021
  • 资助金额:
    $ 30.78万
  • 项目类别:
Engineering protein-specific proteases: targeting signaling proteins
工程蛋白特异性蛋白酶:靶向信号蛋白
  • 批准号:
    10431978
  • 财政年份:
    2021
  • 资助金额:
    $ 30.78万
  • 项目类别:
Engineering protein-specific proteases: targeting signaling proteins
工程蛋白特异性蛋白酶:靶向信号蛋白
  • 批准号:
    10184510
  • 财政年份:
    2021
  • 资助金额:
    $ 30.78万
  • 项目类别:
Engineering protein-specific proteases: targeting signaling proteins
工程蛋白特异性蛋白酶:靶向信号蛋白
  • 批准号:
    10595636
  • 财政年份:
    2021
  • 资助金额:
    $ 30.78万
  • 项目类别:
CORE--Solution properties of alternatively spliced proteins / Core 1
CORE--可变剪接蛋白质的溶液特性/核心 1
  • 批准号:
    6689855
  • 财政年份:
    2003
  • 资助金额:
    $ 30.78万
  • 项目类别:
Structure and stability of 3_alpha vs alpha_beta folds
3_alpha 与 alpha_beta 折叠的结构和稳定性
  • 批准号:
    8438722
  • 财政年份:
    2002
  • 资助金额:
    $ 30.78万
  • 项目类别:
Structure and stability of 3_alpha vs alpha_beta folds
3_alpha 与 alpha_beta 折叠的结构和稳定性
  • 批准号:
    9036397
  • 财政年份:
    2002
  • 资助金额:
    $ 30.78万
  • 项目类别:
PROTEIN FOLDING AND STABILITY OF SUBTILISIN
枯草杆菌蛋白酶的蛋白质折叠和稳定性
  • 批准号:
    2181478
  • 财政年份:
    1990
  • 资助金额:
    $ 30.78万
  • 项目类别:
PROTEIN FOLDING AND STABILITY OF SUBTILISIN
枯草杆菌蛋白酶的蛋白质折叠和稳定性
  • 批准号:
    2181477
  • 财政年份:
    1990
  • 资助金额:
    $ 30.78万
  • 项目类别:
PROTEIN FOLDING AND STABILITY OF SUBTILISIN
枯草杆菌蛋白酶的蛋白质折叠和稳定性
  • 批准号:
    3301207
  • 财政年份:
    1990
  • 资助金额:
    $ 30.78万
  • 项目类别:

相似海外基金

REU Site: Algorithm Design --- Theory and Engineering
REU网站:算法设计---理论与工程
  • 批准号:
    2349179
  • 财政年份:
    2024
  • 资助金额:
    $ 30.78万
  • 项目类别:
    Standard Grant
REU Site: Quantum Machine Learning Algorithm Design and Implementation
REU 站点:量子机器学习算法设计与实现
  • 批准号:
    2349567
  • 财政年份:
    2024
  • 资助金额:
    $ 30.78万
  • 项目类别:
    Standard Grant
Product structures theorems and unified methods of algorithm design for geometrically constructed graphs
几何构造图的乘积结构定理和算法设计统一方法
  • 批准号:
    23K10982
  • 财政年份:
    2023
  • 资助金额:
    $ 30.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Algorithm Design in Strategic and Uncertain Environments
战略和不确定环境中的算法设计
  • 批准号:
    RGPIN-2016-03885
  • 财政年份:
    2022
  • 资助金额:
    $ 30.78万
  • 项目类别:
    Discovery Grants Program - Individual
Human-Centered Algorithm Design for High Stakes Decision-Making in Public Services
以人为本的公共服务高风险决策算法设计
  • 批准号:
    DGECR-2022-00401
  • 财政年份:
    2022
  • 资助金额:
    $ 30.78万
  • 项目类别:
    Discovery Launch Supplement
Human-Centered Algorithm Design for High Stakes Decision-Making in Public Services
以人为本的公共服务高风险决策算法设计
  • 批准号:
    RGPIN-2022-04570
  • 财政年份:
    2022
  • 资助金额:
    $ 30.78万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithm Design
算法设计
  • 批准号:
    CRC-2015-00122
  • 财政年份:
    2022
  • 资助金额:
    $ 30.78万
  • 项目类别:
    Canada Research Chairs
Control Theory and Algorithm Design for Nonlinear Systems Based on Finite Dimensionality of Holonomic Functions
基于完整函数有限维的非线性系统控制理论与算法设计
  • 批准号:
    22K17855
  • 财政年份:
    2022
  • 资助金额:
    $ 30.78万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Scalable Algorithm Design for Unbiased Estimation via Couplings of Markov Chain Monte Carlo Methods
通过马尔可夫链蒙特卡罗方法耦合进行无偏估计的可扩展算法设计
  • 批准号:
    2210849
  • 财政年份:
    2022
  • 资助金额:
    $ 30.78万
  • 项目类别:
    Continuing Grant
Modern mathematical models of big data-driven problems in biological sequence analysis with applications to efficient algorithm design
生物序列分析中大数据驱动问题的现代数学模型及其在高效算法设计中的应用
  • 批准号:
    569312-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 30.78万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了