Detecting biochemical changes in the pregnant mouse cervix by Raman spectroscopy
拉曼光谱检测妊娠小鼠子宫颈的生化变化
基本信息
- 批准号:8766404
- 负责人:
- 金额:$ 38.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-10 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAlprostadilAmidesAmino AcidsApplications GrantsBiochemicalBiochemical MarkersBiochemistryBiologicalBiological MarkersBiological SciencesBiologyBiomechanicsBiomedical EngineeringBirthCervicalCervical RipeningCervix UteriClassificationClinicalCollaborationsCollagenComputational algorithmComputer AnalysisDataDetectionDevelopmentDiseaseEarly DiagnosisEarly treatmentElasticityEmerging TechnologiesEtiologyFetal DevelopmentFiber OpticsFoundationsGenerationsGoalsHealthHigh-Risk PregnancyHormonalHourHydration statusImageImmunohistochemistryIn SituIn Situ HybridizationIndiumInterdisciplinary StudyLaboratoriesLeadLinkLipidsMachine LearningMaintenanceMapsMass Spectrum AnalysisMeasurementMeasuresMechanicsMediator of activation proteinMedicalMethodsMifepristoneModalityMolecularMolecular ProfilingMonitorMusOpticsPhenotypePhysiologicalPregnancyPremature BirthPremature LaborPreventionProcessProlinePropertyProteinsProteomicsRU-486Raman Spectrum AnalysisReproductive BiologyResearchResearch MethodologyResearch PersonnelResearch Project GrantsSpectrum AnalysisStagingStructureSurfaceTechniquesTechnologyTestingTimeTissuesTranslatingTranslationsTyrosineWomanbaseclinical applicationin vivoinfant morbidity/mortalityinnovationinsightmouse modelnovelnovel diagnosticsnovel therapeutic interventionphysical sciencepredictive modelingpregnantprematurepublic health relevanceresponsetool
项目摘要
DESCRIPTION (provided by applicant): Our understanding of cervical remodeling during pregnancy and labor is incomplete, partly due to the lack of in vivo studies on the biochemical changes that occur in the cervix over the course of pregnancy. Elucidation of the mechanisms for cervical ripening could be used to predict the onset of preterm labor. Until recently, in vivo research methods were too invasive to be used as discovery tools, particularly in women who present with preterm labor. This proposal will use in vivo Raman spectroscopy, an optical technique that is sensitive to collagen content, collagen structure, hydration, lipids, proteins, ad other biomolecules to non-invasively investigate the biochemistry of the cervix throughout pregnancy. Using fiber optic in vivo Raman spectroscopy, we recently found significant differences in Raman spectra in at least four important peaks during the course of pregnancy in mice, including discrete signatures for lipids, collagen, amide bonds, and enriched amino acids (proline, tyrosine). Computational analysis of these spectra yielded predictive algorithms with 94% classification accuracy for stage of pregnancy. Studies performed in 2-hour windows at the end of pregnancy identified spectra predictive for the timing of parturition. This approach provides a detailed real-time biomolecular map of cervical ripening that is currently unavailable by other means. In this proposal, we hypothesize that the different mechanisms of premature cervical ripening have unique Raman spectral signatures that correspond to underlying biochemical and mechanical changes that precede preterm birth, which can be detected in vivo. Two Specific Aims are proposed: 1) Determine spectral changes in the cervix of mice with normal and abnormal pregnancy and parturition; 2) Identify specific mediators of cervical remodeling by comparing Raman spectra to mechanical and biochemical changes in the ex vivo cervix during normal and abnormal parturition. Raman spectroscopy has primarily been used for detection of disease. Collaboration between our reproductive biology and bioengineering groups will capitalize on our expertise in Raman analysis of cervical tissues to study dynamic changes in cervix composition during pregnancy. Key elements in cervical biochemistry will be identified. In vivo Raman spectroscopy will be combined with biomechanical studies and imaging mass spectrometry, a powerful tool for in situ proteomic analysis, to examine mice with premature or delayed cervical remodeling. Together, these highly innovative approaches will generate in-depth profiles of cervical biology that will translate into novel non-invasive methods to detect impending premature birth in women.
描述(由申请人提供):我们对妊娠和分娩期间宫颈重塑的理解是不完整的,部分原因是缺乏对妊娠过程中宫颈发生的生化变化的体内研究。阐明宫颈成熟的机制可用于预测早产的发生。直到最近,体内研究方法的侵入性太大,不能作为发现工具,特别是在早产妇女中。该建议将使用体内拉曼光谱,一种对胶原蛋白含量、胶原蛋白结构、水合作用、脂质、蛋白质和其他生物分子敏感的光学技术,以非侵入性地研究整个妊娠期间子宫颈的生物化学。使用光纤在体内拉曼光谱,我们最近发现显着的差异,拉曼光谱在至少四个重要的峰在怀孕过程中的小鼠,包括离散签名的脂质,胶原蛋白,酰胺键,和丰富的氨基酸(脯氨酸,酪氨酸)。这些光谱的计算分析产生了预测算法,妊娠阶段的分类准确率为94%。在妊娠结束时的2小时窗口内进行的研究确定了预测分娩时间的光谱。这种方法提供了一个详细的实时宫颈成熟的生物分子图谱,这是目前无法通过其他手段。在这个提议中,我们假设宫颈过早成熟的不同机制具有独特的拉曼光谱特征,其对应于早产之前的潜在生化和机械变化,这可以在体内检测到。提出了两个具体目的:1)确定正常和异常妊娠和分娩的小鼠子宫颈的光谱变化; 2)通过将拉曼光谱与正常和异常分娩期间离体子宫颈中的机械和生化变化进行比较来识别子宫颈重塑的特定介质。拉曼光谱主要用于疾病的检测。我们的生殖生物学和生物工程小组之间的合作将利用我们在宫颈组织拉曼分析方面的专业知识,研究怀孕期间宫颈成分的动态变化。将确定宫颈生物化学的关键要素。体内拉曼光谱学将与生物力学研究和成像质谱法(原位蛋白质组学分析的有力工具)相结合,以检查过早或延迟宫颈重塑的小鼠。总之,这些高度创新的方法将产生深入的宫颈生物学特征,这些特征将转化为新的非侵入性方法,以检测妇女即将发生的早产。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anita Mahadevan-Jansen其他文献
Anita Mahadevan-Jansen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anita Mahadevan-Jansen', 18)}}的其他基金
Dual-wavelength endoscopic Raman probe for eosinophilic esophagitis
双波长内窥镜拉曼探头治疗嗜酸性食管炎
- 批准号:
10653201 - 财政年份:2022
- 资助金额:
$ 38.74万 - 项目类别:
Complementary ex vivo multimodal optical imaging and in vivo Raman spectroscopy to understand tissue dynamics
补充离体多模态光学成像和体内拉曼光谱以了解组织动力学
- 批准号:
10504836 - 财政年份:2022
- 资助金额:
$ 38.74万 - 项目类别:
Complementary ex vivo multimodal optical imaging and in vivo Raman spectroscopy to understand tissue dynamics
补充离体多模态光学成像和体内拉曼光谱以了解组织动力学
- 批准号:
10683232 - 财政年份:2022
- 资助金额:
$ 38.74万 - 项目类别:
Academic-Industry Partnership for the Translation of a Novel Optical Imaging Approach to guide Endocrine Cancer Surgery
学术与产业合作,转化新型光学成像方法来指导内分泌癌症手术
- 批准号:
10333305 - 财政年份:2018
- 资助金额:
$ 38.74万 - 项目类别:
Detecting biochemical changes in the pregnant mouse cervix by Raman spectroscopy
拉曼光谱检测妊娠小鼠子宫颈的生化变化
- 批准号:
8925122 - 财政年份:2014
- 资助金额:
$ 38.74万 - 项目类别:
Development of breakthrough intra-operative detector and imaging system for parat
开发突破性的术中探测器和成像系统
- 批准号:
8715217 - 财政年份:2012
- 资助金额:
$ 38.74万 - 项目类别:
Breakthrough intra-operative detection of the parathyroid glands
术中甲状旁腺检测的突破
- 批准号:
8315465 - 财政年份:2012
- 资助金额:
$ 38.74万 - 项目类别:
Combined raman spectroscopy-optical tomagraphy for complete diagnosis of skin can
拉曼光谱-光学断层扫描相结合,可对皮肤进行全面诊断
- 批准号:
7623181 - 财政年份:2008
- 资助金额:
$ 38.74万 - 项目类别:
Combined raman spectroscopy-optical tomagraphy for complete diagnosis of skin can
拉曼光谱-光学断层扫描相结合,可对皮肤进行全面诊断
- 批准号:
7533592 - 财政年份:2008
- 资助金额:
$ 38.74万 - 项目类别:
Development of a handheld probe for confocal microscopy and Raman spectroscopy*
开发用于共焦显微镜和拉曼光谱的手持式探头*
- 批准号:
7843690 - 财政年份:2006
- 资助金额:
$ 38.74万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 38.74万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 38.74万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 38.74万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 38.74万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 38.74万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 38.74万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 38.74万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 38.74万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 38.74万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 38.74万 - 项目类别:
Continuing Grant