IN VIVO MEASUREMENT OF BRAIN BIOMECHANICS
脑生物力学的体内测量
基本信息
- 批准号:9043519
- 负责人:
- 金额:$ 3.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2015-11-30
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAddressAdultAffectAnatomyAnisotropyAtlasesAxonBiomechanicsBlood VesselsBrainCadaverChildComputer SimulationDataData AnalysesDementiaDevelopmentDiffusion Magnetic Resonance ImagingDissectionFemaleFiberHeadHealthHumanImageImageryIncidenceIndividualInjuryLeadLearningLifeMagnetic Resonance ImagingMapsMeasurementMeasuresMechanicsMemory impairmentMeningesMental DepressionMethodsModelingMotionNeckParticipantPredispositionPreventionPropertyRecording of previous eventsRelative (related person)Residual stateResolutionRoleRotationSliceSportsStressStress FibersStretchingStructureSymptomsTechniquesTestingTimeTissuesTraumatic Brain InjuryValidationVariantattenuationcohortcraniumdesignelastographyexperiencehead impacthuman subjectimage registrationimaging Segmentationin vivomalemathematical modelpopulation basedpreventpublic health relevanceresponsesimulationtechnology developmenttemporal measurementtransmission processvectorvibrationwhite matter
项目摘要
DESCRIPTION (provided by applicant):
PROJECT ABSTRACT: Computer models of brain biomechanics are needed to understand traumatic brain injury (TBI) and develop methods for prevention, but current computer models have not been fully validated, primarily due to the paucity of direct measurements of brain deformation. This lack of experimental confirmation represents an important barrier to progress. We have developed and applied MR tagging and MR elastography (MRE) methods to measure 2D brain motion and mechanical properties of the brain. In this renewal project we will extend our methods to 3D, and transition the results into computer models. We will acquire high-resolution 3D experimental data on brain deformation in human subjects to address basic questions on the biomechanics of TBI and to accelerate development of validated, reliable computer models. The project is driven by the need to validate simulations, and it will clarify the
roles of key features of the brain. Three specific aims are proposed: Aim 1: Measure 3D relative motion between the brain and skull, and estimate 3D strain fields in live human and cadaver brains, during mild linear and angular head acceleration. Aim 2: Characterize 3D wave propagation and assess the effects of residual stress, fiber stretch, fiber-matrix interaction, and
interfaces on wave propagation in the live human and ex vivo ovine brain. Aim 3: Compare 3D displacement and strain fields quantitatively to the predictions of a computer model of brain biomechanics, and assess the importance of variations in anatomy and material properties. In Aim 1 we will address the question: What are the roles of tethering and supporting structures (vessels and meninges) in the brain's response to skull acceleration? In Aim 2, we ask how these structures, as well as residual stress and anisotropy, affect shear wave propagation in the brain. In Aim 3, we will test directly how well simulations can predict brain motion, and we will use simulation to ask how individual variations in anatomy affect brain biomechanics and susceptibility to TBI. Key contributions of this project will be new data and analysis techniques for validation of computer models of TBI, enabled by the project team's technology developments in imaging of 3D brain motion, automated image segmentation and registration, and mathematical modeling of the brain and skull. The direct integration of computer modeling with acquisition of experimental data from MR tagging and MR elastography will accelerate development of reliable, accurate simulations. At the end of the project we will have: (1) computer models validated against our data that will allow visualization and quantitative prediction of the 3D strain experienced by the brain during selected acceleration/impacts; (2) publicly available data for others to build and validate new computer models of TBI.
描述(由申请人提供):
项目摘要:需要大脑生物力学的计算机模型来了解创伤性脑损伤(TBI)并开发预防方法,但是目前的计算机模型尚未得到充分验证,这主要是由于无法直接测量脑变形的直接测量。缺乏实验确认代表了进步的重要障碍。我们已经开发并应用了MR标记和MR弹性图(MRE)方法来测量大脑的2D脑运动和机械性能。在这个续签项目中,我们将将我们的方法扩展到3D,并将结果转换为计算机模型。我们将获取有关人类受试者脑变形的高分辨率3D实验数据,以解决有关TBI生物力学的基本问题,并加速经过验证的可靠计算机模型的开发。该项目是由验证模拟的需求驱动的,它将澄清
大脑关键特征的作用。提出了三个特定的目的:目标1:测量大脑和头骨之间的3D相对运动,并在轻度线性和角度的头部加速度期间估计活体和尸体大脑中的3D应变场。 AIM 2:表征3D波传播并评估残留应力,纤维拉伸,纤维 - 矩阵相互作用和
在活体和体内卵子大脑中的波传播的界面。 AIM 3:将3D位移和应变场定量比较与脑生物力学计算机模型的预测,并评估解剖学和材料特性变化的重要性。在AIM 1中,我们将解决以下问题:束缚和支撑结构(容器和脑膜)在大脑对颅骨加速度的反应中的作用是什么?在AIM 2中,我们询问这些结构以及残留应力和各向异性如何影响大脑的剪切波传播。在AIM 3中,我们将直接测试模拟如何预测脑运动的能力,并将使用模拟来询问解剖学中的个体变化如何影响脑生物力学和对TBI的敏感性。该项目的主要贡献将是验证TBI计算机模型的新数据和分析技术,这是由项目团队在3D脑运动,自动化图像分割和注册以及大脑和头骨的数学建模的成像中实现的。从MR标记和MR弹性图中获取实验数据的直接集成将加速可靠,准确的模拟。在项目结束时,我们将拥有:(1)根据我们的数据验证的计算机模型,该模型将允许在选定的加速/撞击过程中对大脑经历的3D菌株的可视化和定量预测; (2)其他人可公开可用的数据,以构建和验证TBI的新计算机模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PHILIP V BAYLY其他文献
PHILIP V BAYLY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PHILIP V BAYLY', 18)}}的其他基金
MRI Measurement of the Mechanical Vulnerability of the Brain
大脑机械损伤的 MRI 测量
- 批准号:
10656780 - 财政年份:2019
- 资助金额:
$ 3.78万 - 项目类别:
MRI Measurement of the Mechanical Vulnerability of the Brain
大脑机械损伤的 MRI 测量
- 批准号:
10474698 - 财政年份:2019
- 资助金额:
$ 3.78万 - 项目类别:
MRI Measurement of the Mechanical Vulnerability of the Brain
大脑机械损伤的 MRI 测量
- 批准号:
10471274 - 财政年份:2019
- 资助金额:
$ 3.78万 - 项目类别:
Connecting the mechanobiology of tissue and cells in cerebral cortical folding
连接大脑皮质折叠中组织和细胞的力学生物学
- 批准号:
10619447 - 财政年份:2019
- 资助金额:
$ 3.78万 - 项目类别:
MRI Measurement of the Mechanical Vulnerability of the Brain
大脑机械损伤的 MRI 测量
- 批准号:
10680435 - 财政年份:2019
- 资助金额:
$ 3.78万 - 项目类别:
MRI Measurement of the Mechanical Vulnerability of the Brain
大脑机械损伤的 MRI 测量
- 批准号:
10246436 - 财政年份:2019
- 资助金额:
$ 3.78万 - 项目类别:
Connecting the mechanobiology of tissue and cells in cerebral cortical folding
连接大脑皮质折叠中组织和细胞的力学生物学
- 批准号:
10402819 - 财政年份:2019
- 资助金额:
$ 3.78万 - 项目类别:
MRI Measurement of the Mechanical Vulnerability of the Brain
大脑机械损伤的 MRI 测量
- 批准号:
10015357 - 财政年份:2019
- 资助金额:
$ 3.78万 - 项目类别:
High-Resolution, Anisotropic MR Elastography of the Brain
高分辨率、各向异性脑部 MR 弹性成像
- 批准号:
10317077 - 财政年份:2019
- 资助金额:
$ 3.78万 - 项目类别:
Connecting the mechanobiology of tissue and cells in cerebral cortical folding
连接大脑皮质折叠中组织和细胞的力学生物学
- 批准号:
10159333 - 财政年份:2019
- 资助金额:
$ 3.78万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 3.78万 - 项目类别:
Promoting Caregiver Implementation of an Effective Early Learning Intervention
促进看护者实施有效的早期学习干预
- 批准号:
10636211 - 财政年份:2023
- 资助金额:
$ 3.78万 - 项目类别:
Targeting Alcohol-Opioid Co-Use Among Young Adults Using a Novel MHealth Intervention
使用新型 MHealth 干预措施针对年轻人中酒精与阿片类药物的同时使用
- 批准号:
10456380 - 财政年份:2023
- 资助金额:
$ 3.78万 - 项目类别:
NeuroMAP Phase II - Recruitment and Assessment Core
NeuroMAP 第二阶段 - 招募和评估核心
- 批准号:
10711136 - 财政年份:2023
- 资助金额:
$ 3.78万 - 项目类别: