Connecting the mechanobiology of tissue and cells in cerebral cortical folding

连接大脑皮质折叠中组织和细胞的力学生物学

基本信息

  • 批准号:
    10402819
  • 负责人:
  • 金额:
    $ 50.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-15 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

ABSTRACT The folding patterns observed in the cerebral cortex of individuals affected by many neurodevelopmental disorders differ from those in typically-developing "control" individuals. The human cerebral cortex folds over the period from the middle of gestation through the first months of postnatal life. Although much is known about how the brain develops over this time period, including proliferative activity, morphological maturation of many cell types, establishment of synaptic connections, development of cortical circuitry, macroscopic growth, and system-level physiological changes in the brain, relatively little is understood about how these changes relate to the production of a normal, or abnormal, folding pattern at maturity. Shortcomings in our understanding of the relationship between cellular-level developmental events and macroscopic behavior (growth and biomechanical properties of tissue) limit our ability to explain a given folding abnormality in terms of its neurodevelopmental source, or in terms of potential etiological factors important for a specific neurodevelopmental disorder. This application proposes a series of studies to link high-precision experimental measures of brain growth and mechanical properties with computational simulations to advance our understanding of the biomechanical factors that influence cerebral cortical folding. This combined experimental and theoretical approach will be used to analyze folding of the ferret cerebral cortex. As with the human brain, the ferret brain possesses gyri and sulci at maturity, but in contrast to humans, these folds arise postnatally in ferrets. Specific focus will be placed on the occipital temporal sulcus (OTS), within the primary visual cortex, which folds relatively late compared to other sulci, concluding by P35. Recently, we have discovered that OTS formation is severely affected (or that the OTS does not form at all) in ferrets that have undergone bilateral enucleation at P7. Growth and mechanical properties will therefore be characterized in sighted control (SC) and bilaterally enucleated on P7 (BEP7) ferrets at 6 time points ranging from P8 through P38. This data will be integrated with the development of a multiscale theoretical and computational model of brain growth. In Aim 1, growth will be characterized on a macroscopic scale by in vivo MRI, and on a cellular level by measuring how P7 enucleation affects proliferation dynamics and changes cell body and neuropil volumes over the period of cortical folding. In Aim 2, mechanical properties of the tissue will be quantified over the same age range. Shear moduli of cortical gray matter and developing white matter will be determined using atomic force microscopy. Tissue stress will be measured by observing tissue deformations following incisions. Tissue stress on a smaller spatial scale will be inferred from the shapes of nuclei and from the orientation distributions of cellular processes. In Aim 3, the experimental data from Aims 1 and 2 will be integrated into a model of tissue growth and deformation, and the validity of the model will be evaluated by observing its ability to recapitulate differences in folding patterns between SC and BEP7 ferrets.
摘要 在受许多神经发育障碍影响的个体的大脑皮层中观察到的折叠模式 这些疾病不同于典型发育的“对照”个体中的疾病。人类的大脑皮层 从怀孕中期到出生后最初几个月的时期。尽管我们对 大脑在这段时间内是如何发育的,包括增殖活动,许多 细胞类型、突触连接的建立、皮质回路的发育、宏观生长,以及 虽然大脑中的系统级生理变化,但对这些变化如何关联的了解相对较少 到成熟时产生正常或不正常的折叠模式。在我们的理解中, 细胞水平发育事件与宏观行为(生长和 组织的生物力学性质)限制了我们解释特定折叠异常的能力, 神经发育来源,或在潜在的病因学因素方面的重要性,为特定的 神经发育障碍本申请提出了一系列的研究,以连接高精度的实验 测量大脑的生长和机械性能,并进行计算机模拟, 了解影响大脑皮质折叠的生物力学因素。这种结合实验 用理论方法分析雪貂大脑皮层的折叠。与人类大脑一样, 雪貂的大脑在成熟时具有脑回和脑沟,但与人类不同的是,这些褶皱是在出生后才出现的, 雪貂具体重点将放在枕颞沟(OTS),在初级视觉皮层, 与其他沟相比,其折叠相对较晚,在P35处结束。最近,我们发现OTS 形成受到严重影响(或OTS根本不形成),在雪貂经历了双边 在P7时摘除眼球。因此,生长和机械性能将在视力控制(SC)中表征 并在P8至P38的6个时间点在P7(BEP7)雪貂上双侧去核。这些数据将 与大脑生长的多尺度理论和计算模型的发展相结合。在目标1中, 生长将通过体内MRI在宏观尺度上表征,并且通过测量如何在细胞水平上表征。 P7去核影响增殖动力学,并改变细胞体和神经元体积。 皮质折叠在目标2中,将在相同的年龄范围内量化组织的机械性能。剪切 皮质灰质和发育中的白色物质的模量将使用原子力显微镜测定。 通过观察切口后的组织变形来测量组织应力。较小的组织应力 空间尺度将从细胞核的形状和细胞核的取向分布中推断出来。 流程.在目标3中,将目标1和2的实验数据整合到组织生长模型中 模型的有效性将通过观察其概括能力来评估。 SC和BEP7雪貂之间折叠模式的差异。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

PHILIP V BAYLY其他文献

PHILIP V BAYLY的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('PHILIP V BAYLY', 18)}}的其他基金

MRI Measurement of the Mechanical Vulnerability of the Brain
大脑机械损伤的 MRI 测量
  • 批准号:
    10474698
  • 财政年份:
    2019
  • 资助金额:
    $ 50.1万
  • 项目类别:
MRI Measurement of the Mechanical Vulnerability of the Brain
大脑机械损伤的 MRI 测量
  • 批准号:
    10656780
  • 财政年份:
    2019
  • 资助金额:
    $ 50.1万
  • 项目类别:
MRI Measurement of the Mechanical Vulnerability of the Brain
大脑机械损伤的 MRI 测量
  • 批准号:
    10471274
  • 财政年份:
    2019
  • 资助金额:
    $ 50.1万
  • 项目类别:
Connecting the mechanobiology of tissue and cells in cerebral cortical folding
连接大脑皮质折叠中组织和细胞的力学生物学
  • 批准号:
    10619447
  • 财政年份:
    2019
  • 资助金额:
    $ 50.1万
  • 项目类别:
MRI Measurement of the Mechanical Vulnerability of the Brain
大脑机械损伤的 MRI 测量
  • 批准号:
    10680435
  • 财政年份:
    2019
  • 资助金额:
    $ 50.1万
  • 项目类别:
MRI Measurement of the Mechanical Vulnerability of the Brain
大脑机械损伤的 MRI 测量
  • 批准号:
    10246436
  • 财政年份:
    2019
  • 资助金额:
    $ 50.1万
  • 项目类别:
MRI Measurement of the Mechanical Vulnerability of the Brain
大脑机械损伤的 MRI 测量
  • 批准号:
    10015357
  • 财政年份:
    2019
  • 资助金额:
    $ 50.1万
  • 项目类别:
High-Resolution, Anisotropic MR Elastography of the Brain
高分辨率、各向异性脑部 MR 弹性成像
  • 批准号:
    10317077
  • 财政年份:
    2019
  • 资助金额:
    $ 50.1万
  • 项目类别:
Connecting the mechanobiology of tissue and cells in cerebral cortical folding
连接大脑皮质折叠中组织和细胞的力学生物学
  • 批准号:
    10159333
  • 财政年份:
    2019
  • 资助金额:
    $ 50.1万
  • 项目类别:
IN VIVO MEASUREMENT OF BRAIN BIOMECHANICS
脑生物力学的体内测量
  • 批准号:
    9043519
  • 财政年份:
    2015
  • 资助金额:
    $ 50.1万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 50.1万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 50.1万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50.1万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50.1万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 50.1万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50.1万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 50.1万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 50.1万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 50.1万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50.1万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了