The Role of Osmotic Engine in Confined Migration

渗透引擎在密闭迁移中的作用

基本信息

  • 批准号:
    8875330
  • 负责人:
  • 金额:
    $ 39.46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-06-01 至 2019-05-31
  • 项目状态:
    已结题

项目摘要

Enter the text here that is the new abstract information for your application. This section must be no longer than 30 lines of text. Understanding the mechanisms of cell migration is a fundamental question in cell, developmental and cancer biology. Cell motility is influenced by a complex interplay among intracellular mechanics and signaling, and the physical cues of the microenvironment. Our knowledge on the mechanisms of cell migration stems primarily from in vitro studies using two- dimensional (2D) surfaces. Cell locomotion in 2D is driven by cycles of actin protrusion, integrin-mediated adhesion and myosin-dependent contraction. However, cells in vivo migrate within 3D extracellular matrices and through 3D pre-existing longitudinal channels created by various anatomic structures. Accumulating evidence suggests that the physical confinement affects the regulation and mechanisms of cell locomotion. For instance, myosin contractility and 1 integrin- dependent adhesion are dispensable in cell migration through confined spaces, which persists even when F-actin is disrupted. Thus, an alternative mechanism is at play for cells migrating in narrow microchannels. We recently proposed a new mechanism of cell motility in confined spaces that is described by the osmotic engine model (OEM). According to OEM, a cell migrating in a narrow channel establishes a spatial gradient of aquaporins (AQPs), ion channels and pumps in the cell membrane, so that there is a net inflow of water at the leading edge and a net outflow of water at the cell trailing edge. We hypothesize that cells can use different mechanisms (actomyosin-based and water permeation-based) depending on the physical cues of the microenvironment. We herein propose to develop an integrated experimental and theoretical approach to delineate the mechanisms of cell entry and migration in confined spaces. Experimental work will directly interact with theory and modeling throughout our proposed studies. In Aim 1, we propose to directly measure water uptake by cells migrating through confined spaces, and decipher the molecular mechanisms of water permeation and the role of mechanosensitive (MS) ion channels in confined migration. In conjunction with experimental work, we will develop a comprehensive molecular model of OEM integrating the roles of AQPs, membrane voltages and ion channels and pumps in cell migration in narrow channels. Because confined migration largely depends on microtubule (MT) dynamics, we will determine the role of MT molecular motors and their synergistic effects with actin polymerization in establishing AQP and ion channel polarization (Aim 2). In Aim 3, we will examine the process of cell entry into physically- constricted spaces using our microfluidic device, and explore the role of cytoskeletal proteins, adhesions and membrane components during this process. Taken together, we will decipher the physical and molecular basis of a fundamentally new mechanism governing cell entry and migration in confined spaces in which AQPs, ion pumps and MS channels play key roles using a multidisciplinary approach, involving state-of-the-art bioengineering, imaging, molecular biology tools along with mathematical modeling
在此处输入文本,这是您应用程序的新摘要信息。本节必须不超过30行 文字。 了解细胞迁移的机制是细胞,发育和癌症生物学中的一个基本问题。细胞 运动性受细胞内力学和信号传导之间的复杂相互作用的影响,以及的物理提示 微环境。我们对细胞迁移步骤的机制的了解主要是从体外研究中使用两种研究的知识 尺寸(2D)表面。 2D中的细胞运动是由肌动蛋白,整联蛋白介导的粘合剂和 肌球蛋白依赖性收缩。但是,体内细胞在3D细胞外材料内迁移,并通过3D预先存在 由各种解剖结构产生的纵向通道。积累的证据表明身体 限制会影响细胞运动的调节和机制。例如,肌球蛋白的收缩力和1整合素 - 依赖的粘附在细胞通过狭窄空间迁移中是可分配的,即使F-肌动蛋白为 破坏了。这是针对狭窄的微通道迁移的细胞的另一种机制。我们最近提出了一个 渗透发动机模型(OEM)描述的狭窄空间中细胞运动的新机制。根据 OEM,在狭窄通道中迁移的细胞建立了水通道(AQP),离子通道和泵的空间梯度 在细胞膜中,以便在前缘有水的净流入,在电池尾部有水出口 边缘。我们假设细胞可以使用不同的机制(基于肌动球蛋白和基于水渗透的机制) 取决于微环境的物理提示。我们在这里提出的提议要开发综合的实验和 描绘狭窄空间中细胞进入和迁移的机制的理论方法。实验工作将 在我们提出的整个研究中,直接与理论和建模相互作用。在AIM 1中,我们建议直接测量 细胞的水吸收通过狭窄的空间迁移,并破译了水渗透的分子机制 机械敏感(MS)离子通道在受约束迁移中的作用。结合实验工作,我们将 开发一个整合AQP,膜电压和离子通道的作用的OEM的综合分子模型 和细胞迁移中的泵在狭窄的通道中。因为密闭迁移很大程度上取决于微管(MT) 动力学,我们将确定MT分子电机及其在肌动蛋白聚合中的协同作用的作用 建立AQP和离子通道极化(AIM 2)。在AIM 3中,我们将研究细胞进入物理的过程 - 使用我们的微流体设备狭窄的空间,并探索细胞骨架蛋白,粘合剂和膜的作用 在此过程中的组件。综上 在限制空间中迁移细胞进入和迁移的新机制,其中AQP,离子泵和MS频道播放 使用多学科方法的关键角色,涉及最先进的生物工程,成像,分子生物学工具 与数学建模一起

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Konstantinos Konstantopoulos其他文献

Konstantinos Konstantopoulos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Konstantinos Konstantopoulos', 18)}}的其他基金

Stimulated Brillouin Flow Cytometry for biomechanical assessment of metastatic potential
受激布里渊流式细胞仪用于转移潜能生物力学评估
  • 批准号:
    10358051
  • 财政年份:
    2022
  • 资助金额:
    $ 39.46万
  • 项目类别:
Stimulated Brillouin Flow Cytometry for biomechanical assessment of metastatic potential
受激布里渊流式细胞仪用于转移潜能生物力学评估
  • 批准号:
    10571938
  • 财政年份:
    2022
  • 资助金额:
    $ 39.46万
  • 项目类别:
The interplay of ion transporters and cytoskeleton in breast cancer migration and metastasis
离子转运蛋白和细胞骨架在乳腺癌迁移和转移中的相互作用
  • 批准号:
    10338164
  • 财政年份:
    2021
  • 资助金额:
    $ 39.46万
  • 项目类别:
The interplay of ion transporters and cytoskeleton in breast cancer migration and metastasis
离子转运蛋白和细胞骨架在乳腺癌迁移和转移中的相互作用
  • 批准号:
    10759092
  • 财政年份:
    2021
  • 资助金额:
    $ 39.46万
  • 项目类别:
Cell mechanobiology in confinement using an integration of bioengineering, materials systems and in vivo models
结合生物工程、材料系统和体内模型的限制细胞力学生物学
  • 批准号:
    10582153
  • 财政年份:
    2021
  • 资助金额:
    $ 39.46万
  • 项目类别:
Cell mechanobiology in confinement using an integration of bioengineering, materials systems and in vivo models
结合生物工程、材料系统和体内模型的限制细胞力学生物学
  • 批准号:
    10374917
  • 财政年份:
    2021
  • 资助金额:
    $ 39.46万
  • 项目类别:
The interplay of ion transporters and cytoskeleton in breast cancer migration and metastasis
离子转运蛋白和细胞骨架在乳腺癌迁移和转移中的相互作用
  • 批准号:
    10381200
  • 财政年份:
    2021
  • 资助金额:
    $ 39.46万
  • 项目类别:
Viscotaxis: Novel cell migration mechanisms regulated by microenvironmental viscosity
Viscotaxis:微环境粘度调节的新型细胞迁移机制
  • 批准号:
    10379292
  • 财政年份:
    2021
  • 资助金额:
    $ 39.46万
  • 项目类别:
Viscotaxis: Novel cell migration mechanisms regulated by microenvironmental viscosity
Viscotaxis:微环境粘度调节的新型细胞迁移机制
  • 批准号:
    10622450
  • 财政年份:
    2021
  • 资助金额:
    $ 39.46万
  • 项目类别:
The interplay of ion transporters and cytoskeleton in breast cancer migration and metastasis
离子转运蛋白和细胞骨架在乳腺癌迁移和转移中的相互作用
  • 批准号:
    10524192
  • 财政年份:
    2021
  • 资助金额:
    $ 39.46万
  • 项目类别:

相似国自然基金

由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
  • 批准号:
    82360313
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
丙酮酸激酶催化肌动球蛋白磷酸化调控肉嫩度的分子机制
  • 批准号:
    32372263
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
鱼糜肌动球蛋白的增效转化及其氧化控制分子机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    59 万元
  • 项目类别:
    面上项目
基于Pickering纳米乳液脂质诱导肌动球蛋白凝胶的空间位阻效应及其机制
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
基于Pickering纳米乳液脂质诱导肌动球蛋白凝胶的空间位阻效应及其机制
  • 批准号:
    32172242
  • 批准年份:
    2021
  • 资助金额:
    58.00 万元
  • 项目类别:
    面上项目

相似海外基金

Cytoskeleton-mediated regulation of insulin secretion hot spots in pancreatic beta cells
细胞骨架介导的胰腺β细胞胰岛素分泌热点的调节
  • 批准号:
    10679903
  • 财政年份:
    2023
  • 资助金额:
    $ 39.46万
  • 项目类别:
miRNA-regulation at focal adhesions establishes vascular mechanohomeostasis
粘着斑处的 miRNA 调节建立血管机械稳态
  • 批准号:
    10656557
  • 财政年份:
    2022
  • 资助金额:
    $ 39.46万
  • 项目类别:
Calpain/talin/MLCP axis in pulmonary endothelial barrier regulation
钙蛋白酶/talin/MLCP轴在肺内皮屏障调节中的作用
  • 批准号:
    10522290
  • 财政年份:
    2022
  • 资助金额:
    $ 39.46万
  • 项目类别:
miRNA-regulation at focal adhesions establishes vascular mechanohomeostasis
粘着斑处的 miRNA 调节建立血管机械稳态
  • 批准号:
    10510869
  • 财政年份:
    2022
  • 资助金额:
    $ 39.46万
  • 项目类别:
Single-component optogenetic tools to bidirectionally control RhoA in mechanotransduction
在力转导中双向控制 RhoA 的单组分光遗传学工具
  • 批准号:
    10521872
  • 财政年份:
    2022
  • 资助金额:
    $ 39.46万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了