Viscotaxis: Novel cell migration mechanisms regulated by microenvironmental viscosity

Viscotaxis:微环境粘度调节的新型细胞迁移机制

基本信息

  • 批准号:
    10379292
  • 负责人:
  • 金额:
    $ 46.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-01 至 2026-03-31
  • 项目状态:
    未结题

项目摘要

Cell motility is a key step in the metastatic cascade of events, as it enables cancerous cells dissociating from a primary tumor to navigate through interstitial tissues and ultimately colonize distant organs. Cell locomotion is governed by cell-matrix interactions, the actomyosin cytoskeleton, and cell volume regulation via the involvement of ion transporters, such as the Na+/H+ exchanger 1 (NHE1). To date, most cell motility assays are performed in medium with a viscosity close to that of water (0.77 cP). However, the viscosity of the interstitial fluid varies up to 2-3 cP, and can be further augmented by the presence of macromolecules secreted not only by resident epithelial cells in various tissues but also by tumor cells. Cancer cell plasticity is a key feature in metastasis, as tumor cells need to adapt to and navigate through diverse tissue microenvironments presenting different stiffness, degrees of confinement, viscosity and extracellular matrix (ECM) composition. It is currently unknown how tumor cells sense and respond to (patho)physiologically relevant levels of viscosity. The overarching goal of this project is to employ a multidisciplinary approach involving state-of-the-art bioengineering and imaging tools, quantitative analysis and in vivo models to elucidate the effects of extracellular viscosity on breast cancer cell migration, invasion and metastasis. This application will test the hypothesis, supported by intriguing preliminary data, that elevated extracellular viscosity (≥3cP) promotes NHE1-dependent cell swelling, which triggers the activation of the mechanosensitive ion channel TRPV4, thereby initiating downstream signaling. In Aim 1a, we will establish that TRPV4 is the key mechanosensor of elevated viscosity, which initiates RhoA activation, and delineate the presence of a potential feedback loop between NHE1-dependent TRPV4 activation and RhoA. In Aim 1b, we will demonstrate that the coordinated action of local isosmotic swelling at the leading edge and shrinkage at the trailing edge mediated by NHE1 and potassium-chloride cotransporter 4, KCC4, respectively, supports confined migration at elevated viscosities. Cells, as active mechanical objects upon sensing elevated extracellular viscosity, respond by balancing forces in the cell cytoplasm with those in the extracellular microenvironment, thus resulting in increased cytoskeletal tension, higher RhoA-dependent cell contractility and actin reorganization, which ultimately precipitate nuclear translocation of YAP (Aim 1c). We will characterize the roles of viscosity-sensing mechanisms in discrete steps of metastatic dissemination in a live zebrafish model that affords the unique advantages of optical transparency and exceptionally high-resolution along with high-speed imaging of transplanted tumor cells (Aim 2a). We will complement these studies with mouse models to characterize the localization patterns and functional roles of TRPV4, NHE1, KCC4 and YAP in cell migration in natural mammary tissue tracks in vivo (Aim 2b) and in breast cancer growth and metastasis (Aim 2c), using triple-negative breast cancer cell lines and patient-derived xenografts (PDXs). In sum, this project will define how cells sense and respond to extracellular viscosity and identify novel targets to reduce metastasis.
细胞运动是一系列转移性事件中的关键步骤,因为它使癌细胞 从原发肿瘤中分离出来,穿过间质组织,最终定居在远处的器官。 细胞运动受细胞-基质相互作用、肌动蛋白细胞骨架和细胞体积调节的控制。 通过离子转运体的参与,如Na+/H+交换器1(NHE1)。迄今为止,大多数细胞的运动性 分析是在粘度接近水(0.77 CP)的介质中进行的。然而,该产品的粘度 间质液体的变化可达2-3cp,并可通过分泌的大分子进一步增加。 不仅存在于各种组织中的上皮细胞,也存在于肿瘤细胞中。癌细胞的可塑性是一个关键特征 在转移中,由于肿瘤细胞需要适应和导航呈现的不同组织微环境 不同的硬度、约束程度、粘度和细胞外基质(ECM)组成。它目前是 未知的肿瘤细胞如何感知和反应(病理)生理相关的粘度水平。这个 该项目的总体目标是采用涉及最先进生物工程的多学科方法。 以及成像工具、定量分析和体内模型来阐明细胞外粘度对 乳腺癌细胞的迁移、侵袭和转移。这个应用程序将测试该假设,支持 耐人寻味的初步数据是,细胞外粘度(≥3cP)的升高促进了依赖NHE1的细胞肿胀, 它触发机械敏感离子通道TRPV4的激活,从而启动下游 发信号。在目标1a中,我们将确定TRPV4是提高粘度的关键机械传感器,它启动了 RhoA激活,并描绘了依赖NHE1的TRPV4之间存在潜在的反馈环 激活和RhoA。在目标1b中,我们将证明局部等渗膨胀的协调作用 NHE1和氯化钾共转运体4介导的前沿和后缘收缩, KCC4分别支持粘度较高时的受限迁移。细胞,作为活动的机械对象 感觉到细胞外粘度的增加,通过平衡细胞质中的力量和细胞内的力量来做出反应 细胞外微环境,从而导致细胞骨架张力增加,细胞对RhoA的依赖性更高 收缩和肌动蛋白重组,最终导致YAP的核转位(目标1c)。我们会 描述黏度感应机制在肝转移扩散离散步骤中的作用 斑马鱼模型,提供独特的光学透明度和极高分辨率优势 以及移植肿瘤细胞的高速成像(目标2a)。我们将对这些研究进行补充 小鼠模型研究TRPV4、NHE1、KCC4和YAP在脑内的定位模式和功能 细胞在体内天然乳腺组织中的迁移(Aim 2b)以及乳腺癌生长和转移中的细胞迁移 (AIM 2c),使用三阴性乳腺癌细胞系和患者来源的异种移植(PDX)。总而言之,这个项目 将定义细胞如何感知和响应细胞外黏度,并确定减少转移的新靶点。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Konstantinos Konstantopoulos其他文献

Konstantinos Konstantopoulos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Konstantinos Konstantopoulos', 18)}}的其他基金

Stimulated Brillouin Flow Cytometry for biomechanical assessment of metastatic potential
受激布里渊流式细胞仪用于转移潜能生物力学评估
  • 批准号:
    10358051
  • 财政年份:
    2022
  • 资助金额:
    $ 46.44万
  • 项目类别:
Stimulated Brillouin Flow Cytometry for biomechanical assessment of metastatic potential
受激布里渊流式细胞仪用于转移潜能生物力学评估
  • 批准号:
    10571938
  • 财政年份:
    2022
  • 资助金额:
    $ 46.44万
  • 项目类别:
The interplay of ion transporters and cytoskeleton in breast cancer migration and metastasis
离子转运蛋白和细胞骨架在乳腺癌迁移和转移中的相互作用
  • 批准号:
    10338164
  • 财政年份:
    2021
  • 资助金额:
    $ 46.44万
  • 项目类别:
The interplay of ion transporters and cytoskeleton in breast cancer migration and metastasis
离子转运蛋白和细胞骨架在乳腺癌迁移和转移中的相互作用
  • 批准号:
    10759092
  • 财政年份:
    2021
  • 资助金额:
    $ 46.44万
  • 项目类别:
Cell mechanobiology in confinement using an integration of bioengineering, materials systems and in vivo models
结合生物工程、材料系统和体内模型的限制细胞力学生物学
  • 批准号:
    10582153
  • 财政年份:
    2021
  • 资助金额:
    $ 46.44万
  • 项目类别:
Cell mechanobiology in confinement using an integration of bioengineering, materials systems and in vivo models
结合生物工程、材料系统和体内模型的限制细胞力学生物学
  • 批准号:
    10374917
  • 财政年份:
    2021
  • 资助金额:
    $ 46.44万
  • 项目类别:
The interplay of ion transporters and cytoskeleton in breast cancer migration and metastasis
离子转运蛋白和细胞骨架在乳腺癌迁移和转移中的相互作用
  • 批准号:
    10381200
  • 财政年份:
    2021
  • 资助金额:
    $ 46.44万
  • 项目类别:
Viscotaxis: Novel cell migration mechanisms regulated by microenvironmental viscosity
Viscotaxis:微环境粘度调节的新型细胞迁移机制
  • 批准号:
    10622450
  • 财政年份:
    2021
  • 资助金额:
    $ 46.44万
  • 项目类别:
The interplay of ion transporters and cytoskeleton in breast cancer migration and metastasis
离子转运蛋白和细胞骨架在乳腺癌迁移和转移中的相互作用
  • 批准号:
    10524192
  • 财政年份:
    2021
  • 资助金额:
    $ 46.44万
  • 项目类别:
Cell mechanobiology in confinement using an integration of bioengineering, materials systems and in vivo models
结合生物工程、材料系统和体内模型的限制细胞力学生物学
  • 批准号:
    10559575
  • 财政年份:
    2021
  • 资助金额:
    $ 46.44万
  • 项目类别:

相似海外基金

REU Site: Design, Create, and Innovate 3-Dimensional User Interfaces to Improve Human Sensory and Motor Performance in Virtual Environments (HUMANS MOVE)
REU 网站:设计、创建和创新 3 维用户界面,以提高虚拟环境中的人类感官和运动表现 (HUMANS MOVE)
  • 批准号:
    2349771
  • 财政年份:
    2024
  • 资助金额:
    $ 46.44万
  • 项目类别:
    Standard Grant
CAREER: Atomic-level understanding of stability and transition kinetics of 3-dimensional interfaces under irradiation
职业:对辐照下 3 维界面的稳定性和转变动力学的原子水平理解
  • 批准号:
    2340085
  • 财政年份:
    2024
  • 资助金额:
    $ 46.44万
  • 项目类别:
    Continuing Grant
Artificial fabrication of 3-dimensional noncollinear magnetic order and magnetization manipulation by spin torque
三维非共线磁序的人工制造和自旋转矩磁化操纵
  • 批准号:
    23H00232
  • 财政年份:
    2023
  • 资助金额:
    $ 46.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Understanding of 3-dimensional seismic behavior of RC frame high-speed railway/highway viaducts using FE analysis
使用有限元分析了解 RC 框架高速铁路/公路高架桥的 3 维抗震性能
  • 批准号:
    23H01489
  • 财政年份:
    2023
  • 资助金额:
    $ 46.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Modernization of 3-dimensional printing capabilities at the Aquatic Germplasm and Genetic Resource Center
水产种质和遗传资源中心 3 维打印能力的现代化
  • 批准号:
    10736961
  • 财政年份:
    2023
  • 资助金额:
    $ 46.44万
  • 项目类别:
The 3-dimensional nest of the honey bee: organization, development, and impact on colony function
蜜蜂的 3 维巢穴:组织、发育及其对蜂群功能的影响
  • 批准号:
    2216835
  • 财政年份:
    2023
  • 资助金额:
    $ 46.44万
  • 项目类别:
    Standard Grant
Research on high-density 3-dimensional polymer optical waveguide device for photonics-electronics convergence
光电子融合高密度三维聚合物光波导器件研究
  • 批准号:
    23H01882
  • 财政年份:
    2023
  • 资助金额:
    $ 46.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Scaff-Net: 3 Dimensional multiphoton polymerisation printed scaffolds for medium throughput recording from stem cell derived human cortical networks.
Scaff-Net:3 维多光子聚合打印支架,用于从干细胞衍生的人类皮质网络进行中等通量记录。
  • 批准号:
    EP/X018385/1
  • 财政年份:
    2023
  • 资助金额:
    $ 46.44万
  • 项目类别:
    Research Grant
3-dimensional prompt gamma imaging for online proton beam dose verification
用于在线质子束剂量验证的 3 维瞬发伽马成像
  • 批准号:
    10635210
  • 财政年份:
    2023
  • 资助金额:
    $ 46.44万
  • 项目类别:
Equipment: MRI: Track 1 Acquisition of a 3-Dimensional Nanolithography Instrument
设备:MRI:轨道 1 获取 3 维纳米光刻仪器
  • 批准号:
    2320636
  • 财政年份:
    2023
  • 资助金额:
    $ 46.44万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了