Viscotaxis: Novel cell migration mechanisms regulated by microenvironmental viscosity
Viscotaxis:微环境粘度调节的新型细胞迁移机制
基本信息
- 批准号:10622450
- 负责人:
- 金额:$ 45.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalActinsActomyosinAcuteAffectAnteriorBiological AssayBiomedical EngineeringBiophysicsBloodBreast Cancer CellBreast Cancer PatientBreast Cancer cell lineBreast cancer metastasisCancerousCationsCell VolumesCell membraneCellsComplementCrowdingCytoplasmCytoskeletonDataDissociationDistantElementsEpithelial CellsEventExhibitsExposure toExtracellular MatrixExtracellular Matrix DegradationFeedbackFiberFocal AdhesionsGoalsGrowthHuman bodyImageImaging DeviceIn VitroInjectionsIntegrinsIntercellular FluidInvadedIon ChannelIonsLightLiquid substanceMechanicsMediatingMemoryMigration AssayModelingMotionMotorMucinsMusNeoplasm MetastasisNeoplasm TransplantationNuclear TranslocationOpticsOrganOrganoidsOsmosisPIK3CG genePathway interactionsPatientsPatternPhysiologicalPlasmaPrimary NeoplasmProcessPrognostic MarkerProteinsPublishingRegulationResolutionRoleSignal TransductionSiteSpeedStretchingSurvival AnalysisSwellingTailTestingTissuesTravelVeinsViscosityWaterZebrafishbreast cancer survivalcancer cellcell motilitychloride-cotransporter potassiumconfocal imagingextracellularin vivoin vivo Modelinterdisciplinary approachinterstitiallung colonizationmacromoleculemalignant breast neoplasmmammarymechanotransductionmembermigrationmouse modelmultiphoton microscopyneoplastic cellnew therapeutic targetnovelparticlepatient derived xenograft modelpreconditioningreceptortriple-negative invasive breast carcinomatumor
项目摘要
Cell motility is a key step in the metastatic cascade of events, as it enables cancerous cells
dissociating from a primary tumor to navigate through interstitial tissues and ultimately colonize distant organs.
Cell locomotion is governed by cell-matrix interactions, the actomyosin cytoskeleton, and cell volume regulation
via the involvement of ion transporters, such as the Na+/H+ exchanger 1 (NHE1). To date, most cell motility
assays are performed in medium with a viscosity close to that of water (0.77 cP). However, the viscosity of the
interstitial fluid varies up to 2-3 cP, and can be further augmented by the presence of macromolecules secreted
not only by resident epithelial cells in various tissues but also by tumor cells. Cancer cell plasticity is a key feature
in metastasis, as tumor cells need to adapt to and navigate through diverse tissue microenvironments presenting
different stiffness, degrees of confinement, viscosity and extracellular matrix (ECM) composition. It is currently
unknown how tumor cells sense and respond to (patho)physiologically relevant levels of viscosity. The
overarching goal of this project is to employ a multidisciplinary approach involving state-of-the-art bioengineering
and imaging tools, quantitative analysis and in vivo models to elucidate the effects of extracellular viscosity on
breast cancer cell migration, invasion and metastasis. This application will test the hypothesis, supported by
intriguing preliminary data, that elevated extracellular viscosity (≥3cP) promotes NHE1-dependent cell swelling,
which triggers the activation of the mechanosensitive ion channel TRPV4, thereby initiating downstream
signaling. In Aim 1a, we will establish that TRPV4 is the key mechanosensor of elevated viscosity, which initiates
RhoA activation, and delineate the presence of a potential feedback loop between NHE1-dependent TRPV4
activation and RhoA. In Aim 1b, we will demonstrate that the coordinated action of local isosmotic swelling at the
leading edge and shrinkage at the trailing edge mediated by NHE1 and potassium-chloride cotransporter 4,
KCC4, respectively, supports confined migration at elevated viscosities. Cells, as active mechanical objects upon
sensing elevated extracellular viscosity, respond by balancing forces in the cell cytoplasm with those in the
extracellular microenvironment, thus resulting in increased cytoskeletal tension, higher RhoA-dependent cell
contractility and actin reorganization, which ultimately precipitate nuclear translocation of YAP (Aim 1c). We will
characterize the roles of viscosity-sensing mechanisms in discrete steps of metastatic dissemination in a live
zebrafish model that affords the unique advantages of optical transparency and exceptionally high-resolution
along with high-speed imaging of transplanted tumor cells (Aim 2a). We will complement these studies with
mouse models to characterize the localization patterns and functional roles of TRPV4, NHE1, KCC4 and YAP in
cell migration in natural mammary tissue tracks in vivo (Aim 2b) and in breast cancer growth and metastasis
(Aim 2c), using triple-negative breast cancer cell lines and patient-derived xenografts (PDXs). In sum, this project
will define how cells sense and respond to extracellular viscosity and identify novel targets to reduce metastasis.
细胞运动是一个关键步骤,在转移级联事件,因为它使癌细胞
从原发性肿瘤分离以通过间质组织并最终定殖于远处器官。
细胞运动受细胞-基质相互作用、肌动球蛋白细胞骨架和细胞体积调节的控制
通过离子转运蛋白的参与,例如Na+/H+交换器1(NHE 1)。迄今为止,大多数细胞运动
在粘度接近水(0.77cP)的介质中进行测定。然而,
间质液变化高达2-3 cP,并且可以通过分泌的大分子的存在而进一步增加
不仅由各种组织中的常驻上皮细胞,而且由肿瘤细胞。癌细胞的可塑性是一个关键特征
在转移中,由于肿瘤细胞需要适应并通过呈现不同的组织微环境,
不同的硬度、限制程度、粘度和细胞外基质(ECM)组成。目前
未知肿瘤细胞如何感知和响应(病理)生理相关粘度水平。的
该项目的总体目标是采用涉及最先进生物工程的多学科方法
和成像工具,定量分析和体内模型,以阐明细胞外粘度对
乳腺癌细胞的迁移、侵袭和转移。本应用程序将测试假设,支持
有趣的初步数据,细胞外粘度升高(≥3cP)促进NHE 1依赖性细胞肿胀,
其触发机械敏感性离子通道TRPV 4的激活,从而启动下游
发信号。在目标1a中,我们将确定TRPV 4是升高粘度的关键机械传感器,其启动
RhoA激活,并描绘了NHE 1依赖性TRPV 4之间潜在反馈回路的存在。
激活和RhoA。在目标1b中,我们将证明,局部等渗膨胀的协调作用,
由NHE 1和氯化钾协同转运蛋白4介导的前缘和后缘收缩,
KCC 4分别支持在高粘度下的受限迁移。细胞,作为主动机械物体,
感觉到升高的细胞外粘度,通过平衡细胞质中的力与细胞质中的力来响应。
细胞外微环境,从而导致增加的细胞骨架张力,更高的RhoA依赖性细胞
收缩和肌动蛋白重组,最终促使雅普核转位(Aim 1c)。我们将
描述粘度传感机制在活体转移性传播的离散步骤中的作用
斑马鱼模型,具有光学透明和极高分辨率的独特优势
沿着移植肿瘤细胞的高速成像(Aim 2a)。我们将补充这些研究,
小鼠模型,以表征TRPV 4、NHE 1、KCC 4和雅普在
天然乳腺组织中的细胞迁移在体内追踪(Aim 2b)以及在乳腺癌生长和转移中
(Aim图2c),使用三阴性乳腺癌细胞系和患者来源的异种移植物(PDX)。总而言之,这个项目
将定义细胞如何感知和响应细胞外粘度,并确定新的目标,以减少转移。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Konstantinos Konstantopoulos其他文献
Konstantinos Konstantopoulos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Konstantinos Konstantopoulos', 18)}}的其他基金
Stimulated Brillouin Flow Cytometry for biomechanical assessment of metastatic potential
受激布里渊流式细胞仪用于转移潜能生物力学评估
- 批准号:
10358051 - 财政年份:2022
- 资助金额:
$ 45.86万 - 项目类别:
Stimulated Brillouin Flow Cytometry for biomechanical assessment of metastatic potential
受激布里渊流式细胞仪用于转移潜能生物力学评估
- 批准号:
10571938 - 财政年份:2022
- 资助金额:
$ 45.86万 - 项目类别:
The interplay of ion transporters and cytoskeleton in breast cancer migration and metastasis
离子转运蛋白和细胞骨架在乳腺癌迁移和转移中的相互作用
- 批准号:
10338164 - 财政年份:2021
- 资助金额:
$ 45.86万 - 项目类别:
The interplay of ion transporters and cytoskeleton in breast cancer migration and metastasis
离子转运蛋白和细胞骨架在乳腺癌迁移和转移中的相互作用
- 批准号:
10759092 - 财政年份:2021
- 资助金额:
$ 45.86万 - 项目类别:
Cell mechanobiology in confinement using an integration of bioengineering, materials systems and in vivo models
结合生物工程、材料系统和体内模型的限制细胞力学生物学
- 批准号:
10582153 - 财政年份:2021
- 资助金额:
$ 45.86万 - 项目类别:
Cell mechanobiology in confinement using an integration of bioengineering, materials systems and in vivo models
结合生物工程、材料系统和体内模型的限制细胞力学生物学
- 批准号:
10374917 - 财政年份:2021
- 资助金额:
$ 45.86万 - 项目类别:
The interplay of ion transporters and cytoskeleton in breast cancer migration and metastasis
离子转运蛋白和细胞骨架在乳腺癌迁移和转移中的相互作用
- 批准号:
10381200 - 财政年份:2021
- 资助金额:
$ 45.86万 - 项目类别:
Viscotaxis: Novel cell migration mechanisms regulated by microenvironmental viscosity
Viscotaxis:微环境粘度调节的新型细胞迁移机制
- 批准号:
10379292 - 财政年份:2021
- 资助金额:
$ 45.86万 - 项目类别:
The interplay of ion transporters and cytoskeleton in breast cancer migration and metastasis
离子转运蛋白和细胞骨架在乳腺癌迁移和转移中的相互作用
- 批准号:
10524192 - 财政年份:2021
- 资助金额:
$ 45.86万 - 项目类别:
Cell mechanobiology in confinement using an integration of bioengineering, materials systems and in vivo models
结合生物工程、材料系统和体内模型的限制细胞力学生物学
- 批准号:
10559575 - 财政年份:2021
- 资助金额:
$ 45.86万 - 项目类别:
相似海外基金
A novel motility system driven by two classes of bacterial actins MreB
由两类细菌肌动蛋白 MreB 驱动的新型运动系统
- 批准号:
22KJ2613 - 财政年份:2023
- 资助金额:
$ 45.86万 - 项目类别:
Grant-in-Aid for JSPS Fellows
The structural basis of plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
342887 - 财政年份:2016
- 资助金额:
$ 45.86万 - 项目类别:
Operating Grants
The structural basis for plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
278338 - 财政年份:2013
- 资助金额:
$ 45.86万 - 项目类别:
Operating Grants
Cytoplasmic Actins in Maintenance of Muscle Mitochondria
细胞质肌动蛋白在维持肌肉线粒体中的作用
- 批准号:
8505938 - 财政年份:2012
- 资助金额:
$ 45.86万 - 项目类别:
Differential Expression of the Diverse Plant Actins
多种植物肌动蛋白的差异表达
- 批准号:
7931495 - 财政年份:2009
- 资助金额:
$ 45.86万 - 项目类别:
Studies on how actins and microtubules are coordinated and its relevancy.
研究肌动蛋白和微管如何协调及其相关性。
- 批准号:
19390048 - 财政年份:2007
- 资助金额:
$ 45.86万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Interaction of myosin with monomeric actins
肌球蛋白与单体肌动蛋白的相互作用
- 批准号:
5311554 - 财政年份:2001
- 资助金额:
$ 45.86万 - 项目类别:
Priority Programmes
STRUCTURE/INTERACTIONS OF ACTINS AND ACTIN-BINDING PROTEIN
肌动蛋白和肌动蛋白结合蛋白的结构/相互作用
- 批准号:
6316669 - 财政年份:2000
- 资助金额:
$ 45.86万 - 项目类别:














{{item.name}}会员




