Informatic tools for predicting an ordinal response for high-dimensional data
用于预测高维数据顺序响应的信息工具
基本信息
- 批准号:9273725
- 负责人:
- 金额:$ 10.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION (provided by applicant):
Health status and outcomes are frequently measured on an ordinal scale. Examples include scoring methods for liver biopsy specimens from patients with chronic hepatitis, including the Knodell hepatic activity index, the Ishak score, and the METAVIR score. In addition, tumor-node-metasis stage for cancer patients is an ordinal scaled measure. Moreover, the more recently advocated method for evaluating response to treatment in target tumor lesions is the Response Evaluation Criteria In Solid Tumors method, with ordinal outcomes defined as complete response, partial response, stable disease, and progressive disease. Traditional ordinal response modeling methods assume independence among the predictor variables and require that the number of samples (n) exceed the number of covariates (p). These are both violated in the context of high-throughput genomic studies. Recently, penalized models have been successfully applied to high-throughput genomic datasets in fitting linear, logistic, and Cox proportional hazards models with excellent performance. However, extension of penalized models to the ordinal response setting has not been fully described nor has software been made generally available. Herein we propose to apply the L1 penalization method to ordinal response models to enable modeling of common ordinal response data when a high-dimensional genomic data comprise the predictor space. This study will expand the scope of our current research by providing additional model-based ordinal classification methodologies applicable for high-dimensional datasets to accompany the heuristic based classification tree and random forest ordinal methodologies we have previously described. The specific aims of this application are to: (1) Develop R functions for implementing the stereotype logit model as well as an L1 penalized stereotype logit model for modeling an ordinal response. (2) Empirically examine the performance of the L1 penalized stereotype logit model and competitor ordinal response models by performing a simulation study and applying the models to publicly available microarray datasets. (3) Develop an R package for fitting a random-effects ordinal regression model for clustered ordinal response data. (4) Extend the random-effects ordinal regression model to include an L1 penalty term to accomodate high-dimensional covariate spaces and empirically examine the performance of the L1random-effects ordinal regression model through application to microarray data. Studies involving protocol biopsies where both histopathological assessment and microarray studies are performed at the same time point are increasingly being performed, so that the methodology and software developed in this application will provide unique informatic methods for analyzing such data. Moreover, the ordinal response extensions proposed in this application, though initially conceived of by considering microarray applications, will be broadly applicable to a variety of health, social, and behavioral research fields, which commonly collect human preference data and other responses on an ordinal scale.
描述(由申请人提供):
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Elastic Net Constrained Stereotype Logit Model for Ordered Categorical Data.
用于有序分类数据的弹性网络约束刻板印象 Logit 模型。
- DOI:10.15406/bbij.2015.02.00049
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:Williams,AndréAa;Archer,KellieJ
- 通讯作者:Archer,KellieJ
Generalized monotone incremental forward stagewise method for modeling count data: application predicting micronuclei frequency.
用于建模计数数据的广义单调增量前向阶段方法:预测微核频率的应用。
- DOI:10.4137/cin.s17278
- 发表时间:2015
- 期刊:
- 影响因子:2
- 作者:Makowski,Mateusz;Archer,KellieJ
- 通讯作者:Archer,KellieJ
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kellie J. Archer其他文献
Regularized Mixture Cure Models Identify a Gene Signature That Improves Risk Stratification within the Favorable-Risk Group in 2017 European Leukemianet (ELN) Classification of Acute Myeloid Leukemia (Alliance 152010)
- DOI:
10.1182/blood-2022-166477 - 发表时间:
2022-11-15 - 期刊:
- 影响因子:
- 作者:
Kellie J. Archer;Han Fu;Krzysztof Mrózek;Deedra Nicolet;Jessica Kohlschmidt;Alice S. Mims;Geoffrey L. Uy;Wendy Stock;John C. Byrd;Ann-Kathrin Eisfeld - 通讯作者:
Ann-Kathrin Eisfeld
Characterization of Survival Outcomes and Clinical and Molecular Modulators in Adult Patients with Core-Binding Factor Acute Myeloid Leukemia (CBF-AML) Treated with Hidac Consolidation: An Alliance Legacy Study
- DOI:
10.1182/blood-2022-167210 - 发表时间:
2022-11-15 - 期刊:
- 影响因子:
- 作者:
Jonathan Hyak;Deedra Nicolet;Jessica Kohlschmidt;Kellie J. Archer;James S. Blachly;Karilyn T. Larkin;Bayard L. Powell;Jonathan E. Kolitz;Maria R. Baer;William G. Blum;Geoffrey L. Uy;Wendy Stock;Richard M. Stone;John C. Byrd;Krzysztof Mrózek;Ann-Kathrin Eisfeld;Alice S. Mims - 通讯作者:
Alice S. Mims
Comparing genetic profiles of embryonic day 9 (E9) mouse yolk sac erythroid and erythroid and epithelial cells isolated by microdissection
- DOI:
10.1016/j.bcmd.2006.10.124 - 发表时间:
2007-03-01 - 期刊:
- 影响因子:
- 作者:
Latasha C. Redmond;Jack L. Haar;Catherine I. Dumur;Kellie J. Archer;Priyadarshi Basu;Joyce A. Lloyd - 通讯作者:
Joyce A. Lloyd
Beat-AML 2024 ELN–refined risk stratification for older adults with newly diagnosed AML given lower-intensity therapy
- DOI:
10.1182/bloodadvances.2024013685 - 发表时间:
2024-10-22 - 期刊:
- 影响因子:
- 作者:
Fieke W. Hoff;William G. Blum;Ying Huang;Rina Li Welkie;Ronan T. Swords;Elie Traer;Eytan M. Stein;Tara L. Lin;Kellie J. Archer;Prapti A. Patel;Robert H. Collins;Maria R. Baer;Vu H. Duong;Martha L. Arellano;Wendy Stock;Olatoyosi Odenike;Robert L. Redner;Tibor Kovacsovics;Michael W. Deininger;Joshua F. Zeidner - 通讯作者:
Joshua F. Zeidner
Outcome Prediction By the New 2022 European Leukemia Net (ELN) Genetic-Risk Classification for Adult Patients (Pts) with Acute Myeloid Leukemia (AML): An Alliance Study
- DOI:
10.1182/blood-2022-167352 - 发表时间:
2022-11-15 - 期刊:
- 影响因子:
- 作者:
Krzysztof Mrózek;Jessica Kohlschmidt;James S. Blachly;Deedra Nicolet;Andrew J. Carroll;Kellie J. Archer;Alice S. Mims;Karilyn T. Larkin;Shelley Orwick;Christopher C. Oakes;Jonathan E. Kolitz;Bayard L. Powell;William G. Blum;Guido Marcucci;Maria R. Baer;Geoffrey L. Uy;Wendy Stock;John C. Byrd;Ann-Kathrin Eisfeld - 通讯作者:
Ann-Kathrin Eisfeld
Kellie J. Archer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kellie J. Archer', 18)}}的其他基金
Pretransplant comprehensive scores to predict long term graft outcomes
移植前综合评分可预测长期移植结果
- 批准号:
10679624 - 财政年份:2023
- 资助金额:
$ 10.49万 - 项目类别:
Penalized mixture cure models for identifying genomic features associated with outcome in acute myeloid leukemia
用于识别与急性髓系白血病结果相关的基因组特征的惩罚混合治疗模型
- 批准号:
10340087 - 财政年份:2022
- 资助金额:
$ 10.49万 - 项目类别:
Penalized mixture cure models for identifying genomic features associated with outcome in acute myeloid leukemia
用于识别与急性髓系白血病结果相关的基因组特征的惩罚混合治疗模型
- 批准号:
10544523 - 财政年份:2022
- 资助金额:
$ 10.49万 - 项目类别:
Assessment of Donor Quality for Improving Kidney Transplant Outcomes
评估捐献者质量以改善肾移植结果
- 批准号:
9262665 - 财政年份:2017
- 资助金额:
$ 10.49万 - 项目类别:
Assessment of Donor Quality for Improving Kidney Transplant Outcomes
评估捐献者质量以改善肾移植结果
- 批准号:
10203464 - 财政年份:2017
- 资助金额:
$ 10.49万 - 项目类别:
Assessment of Donor Quality for Improving Kidney Transplant Outcomes
评估捐献者质量以改善肾移植结果
- 批准号:
9753687 - 财政年份:2017
- 资助金额:
$ 10.49万 - 项目类别:
Informatic tools for predicting an ordinal response for high-dimensional data
用于预测高维数据顺序响应的信息工具
- 批准号:
8714054 - 财政年份:2012
- 资助金额:
$ 10.49万 - 项目类别:
Informatic tools for predicting an ordinal response for high-dimensional data
用于预测高维数据顺序响应的信息工具
- 批准号:
8216289 - 财政年份:2012
- 资助金额:
$ 10.49万 - 项目类别:
Recursive partitioning and ensemble methods for classifying an ordinal response
用于对序数响应进行分类的递归划分和集成方法
- 批准号:
7805045 - 财政年份:2009
- 资助金额:
$ 10.49万 - 项目类别:
Recursive partitioning and ensemble methods for classifying an ordinal response
用于对序数响应进行分类的递归划分和集成方法
- 批准号:
7670456 - 财政年份:2008
- 资助金额:
$ 10.49万 - 项目类别:
相似海外基金
Developing a new generation of tools for predicting novel AMR mutation profiles using generative AI
使用生成人工智能开发新一代工具来预测新型 AMR 突变谱
- 批准号:
BB/Z514305/1 - 财政年份:2024
- 资助金额:
$ 10.49万 - 项目类别:
Research Grant
Engineered tissue arrays to streamline deimmunized DMD gene therapy vectors
工程组织阵列可简化去免疫 DMD 基因治疗载体
- 批准号:
10724882 - 财政年份:2023
- 资助金额:
$ 10.49万 - 项目类别:
Predicting the Absence of Serious Bacterial Infection in the PICU
预测 PICU 中不存在严重细菌感染
- 批准号:
10806039 - 财政年份:2023
- 资助金额:
$ 10.49万 - 项目类别:
Novel non-invasive approach for predicting retinopathy of prematurity in premature neonates
预测早产儿视网膜病变的新型非侵入性方法
- 批准号:
10665438 - 财政年份:2023
- 资助金额:
$ 10.49万 - 项目类别:
Immune determinants of pediatric HIV/SIV reservoir establishment and maintenance
儿科 HIV/SIV 病毒库建立和维持的免疫决定因素
- 批准号:
10701469 - 财政年份:2023
- 资助金额:
$ 10.49万 - 项目类别:
A multimodal approach for precision immuno-oncoloy in lymphoma treated with CAR-T cells
CAR-T 细胞治疗淋巴瘤的精准免疫肿瘤多模式方法
- 批准号:
10722590 - 财政年份:2023
- 资助金额:
$ 10.49万 - 项目类别:
Predicting and Preventing Adverse Maternal and Child Outcomes of Opioid Use Disorder in Pregnancy
预测和预防妊娠期阿片类药物使用障碍的不良母婴结局
- 批准号:
10683849 - 财政年份:2023
- 资助金额:
$ 10.49万 - 项目类别:
Predicting Clinical Phenotypes in Crohn's Disease Using Machine Learning and Single-Cell 'omics
使用机器学习和单细胞组学预测克罗恩病的临床表型
- 批准号:
10586795 - 财政年份:2023
- 资助金额:
$ 10.49万 - 项目类别:
Predicting Performance in Adult Cochlear Implantation
预测成人人工耳蜗植入的性能
- 批准号:
10634282 - 财政年份:2023
- 资助金额:
$ 10.49万 - 项目类别:
Predicting 3D physical gene-enhancer interactions through integration of GTEx and 4DN data
通过整合 GTEx 和 4DN 数据预测 3D 物理基因增强子相互作用
- 批准号:
10776871 - 财政年份:2023
- 资助金额:
$ 10.49万 - 项目类别: