Penalized mixture cure models for identifying genomic features associated with outcome in acute myeloid leukemia
用于识别与急性髓系白血病结果相关的基因组特征的惩罚混合治疗模型
基本信息
- 批准号:10340087
- 负责人:
- 金额:$ 25.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:Acute Myelocytic LeukemiaAllogenicAmerican Cancer SocietyArchivesBiologicalBiological AssayCessation of lifeCharacteristicsChronicClinicalClinical TrialsClipComputer softwareCox Proportional Hazards ModelsDataData AnalysesData ScienceData SetDecision MakingDevelopmentDiagnosisDiseaseDisease-Free SurvivalEffectivenessEventGene ExpressionGenesGenomicsMalignant NeoplasmsMethodologyMethodsMethylationMicroRNAsModalityModelingMolecularMutationOncologyOutcomePatientsPerformancePopulation StudyProbabilityProcessPrognosisPropertyRUNX1 geneResearchResearch PersonnelResearch Project GrantsRiskSample SizeSamplingSampling StudiesStatistical MethodsStem cell transplantSubgroupSystemTechniquesTechnologyTestingThe Cancer Genome AtlasTherapeuticTherapeutic AgentsTimeTissue SampleUnited States National Library of Medicineagedbiomedical informaticscancer typechemotherapyclinical practicedata curationexperiencefollow-uphazardhigh dimensionalityimprovedinterestmRNA Expressionmultidimensional datanew therapeutic targetnovelprognosticrisk stratificationsemiparametricsimulationsoftware developmentsurvival outcomesurvivorshiptargeted treatmenttherapeutic target
项目摘要
Molecular features associated with time-to-event outcomes, such as overall or disease-free survival, may be
prognostically relevant or potential therapeutic targets. Therefore, analyzing data from high-throughput genomic
assays with clinical follow-up data has been of growing interest. The Cancer Genome Atlas (TCGA) Project has
collected baseline demographic, clinical characteristics, and follow-up data for 11,125 patients for 32 different
cancer types and corresponding tissue samples were processed for examining SNPs, copy number, methylation,
miRNA expression, and mRNA expression. Because the number of variables (P ) exceeds the sample size (N),
one strategy frequently employed when associating molecular features to survivorship data is to fit univariable
Cox proportional hazards (PH) models followed by adjustment for multiple hypothesis tests using a false discovery
rate approach. However, most chronic conditions and diseases, including cancer, are likely caused by multiple
dysregulated genes or mutations. It is therefore critical to fit multivariable models in the presence of a high-
dimensional covariate space. Traditional statistical methods cannot be used when the number of features exceeds
the sample size (e.g., P > N), though penalized methods perform automatic variable selection and accommodate
the P > N scenario. Penalized approaches including LASSO, smoothly clipped absolute deviation (SCAD),
adaptive LASSO, and Bayesian LASSO have all been extended to Cox's PH model for handling high-dimensional
covariate spaces. However, when modeling survival or other time-to-event outcomes, the Cox PH model assumes
that all subjects will experience the event of interest, which is violated when a subset of subjects are cured.
Instead, when a subset of subjects in the data are cured, mixture cure models should be fit. Although mixture
cure models have been described for traditional settings where the number of samples exceeds the number
of covariates, limited variable selection methods and no methods for high-dimensional model fitting currently
exist for mixture cure models. Therefore, this project will overcome a critical barrier to progress in this field
by developing penalized parametric and semi-parametric mixture cure models applicable for high-dimensional
datasets. The specific aims of this application are to: (1) Develop penalized parametric mixture cure models
for high-dimensional datasets; and (2) Develop a penalized semi-parametric proportional hazards mixture cure
model for high-dimensional datasets. For both aims we will characterize the performance of the methods using
extensive simulation studies, develop software, and distribute R packages to CRAN. In aim (3) we will identify
molecular features associated with cure and survival using our large unique AML dataset from the Alliance for
Clinical Trials in Oncology and assess robustness of findings using AML datasets from Gene Expression Omnibus
and The Cancer Genome Atlas project. This research will fill a critical gap as there are currently no mixture cure
models for high-dimensional data. We anticipate application of our methods to our AML data will enhance existing
risk stratification systems used in daily clinical practice that determine treatment intensity and modality.
与事件发生时间结局相关的分子特征,如总体或无病存活,可能是
预测相关的或潜在的治疗靶点。因此,分析来自高通量基因组的数据
临床随访数据的分析越来越引起人们的兴趣。癌症基因组图谱计划已经
收集了32种不同类型的11,125名患者的基线人口学、临床特征和随访数据
对癌症类型和相应的组织样本进行处理以检测SNPs、拷贝数、甲基化
MiRNA的表达,以及mRNA的表达。因为变量的数量(P)超过样本大小(N),
在将分子特征与生存数据相关联时,经常使用的一种策略是fit单变量
COX比例风险(PH)模型及使用错误发现对多重假设检验进行调整
费率法。然而,大多数慢性病和疾病,包括癌症,很可能是由多发性
失调的基因或突变。因此,fit多变量模型在存在高值时是至关重要的。
维协变量空间。当要素数量超过时,无法使用传统统计方法
样本大小(例如,P&>N),尽管受处罚的方法执行自动变量选择并适应
宝洁的情况。惩罚方法包括套索、平滑截断绝对偏差(SCAD)、
自适应套索和贝叶斯套索都已扩展到Cox的PH模型,用于处理高维数据
协变量空间。然而,当对存活率或其他事件发生时间结果进行建模时,COX PH模型假定
所有受试者都将经历感兴趣的事件,当受试者的子集被治愈时,这是违反的。
相反,当数据中的受试者子集被治愈时,混合治愈模型应该是fit。尽管混合
已针对样本数量超过数量的传统设置描述了固化模型
协变量,有限的变量选择方法,目前还没有高维模型fi设置的方法
存在混合固化模型。因此,这个项目将克服在这个fi领域取得进展的关键障碍。
通过建立适用于高维的惩罚参数和半参数混合固化模型
数据集。本应用的具体目的是:(1)建立惩罚参数混合曲线模型(fi)。
对于高维数据集;以及(2)开发了惩罚半参数比例风险混合曲线
高维数据集的模型。对于这两个目标,我们将使用以下方法来表征方法的性能
广泛的模拟研究,开发软件,并将R包分发给CRAN。在AIM(3)中,我们将确定
使用我们来自美国急性髓细胞白血病联盟的大型独特的急性髓细胞白血病数据集,研究与治愈和生存相关的分子特征
使用来自基因表达总表的急性髓细胞白血病数据集进行肿瘤学临床试验和评估fi结合的稳健性
和癌症基因组图谱项目。这项研究将是一个关键的缺口,因为目前还没有混合治愈方法(fill
高维数据的模型。我们预计,将我们的方法应用于我们的AML数据将增强现有的
确定治疗强度和方式的日常临床实践中使用的风险策略(Risk Stratifi)系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kellie J. Archer其他文献
Regularized Mixture Cure Models Identify a Gene Signature That Improves Risk Stratification within the Favorable-Risk Group in 2017 European Leukemianet (ELN) Classification of Acute Myeloid Leukemia (Alliance 152010)
- DOI:
10.1182/blood-2022-166477 - 发表时间:
2022-11-15 - 期刊:
- 影响因子:
- 作者:
Kellie J. Archer;Han Fu;Krzysztof Mrózek;Deedra Nicolet;Jessica Kohlschmidt;Alice S. Mims;Geoffrey L. Uy;Wendy Stock;John C. Byrd;Ann-Kathrin Eisfeld - 通讯作者:
Ann-Kathrin Eisfeld
Characterization of Survival Outcomes and Clinical and Molecular Modulators in Adult Patients with Core-Binding Factor Acute Myeloid Leukemia (CBF-AML) Treated with Hidac Consolidation: An Alliance Legacy Study
- DOI:
10.1182/blood-2022-167210 - 发表时间:
2022-11-15 - 期刊:
- 影响因子:
- 作者:
Jonathan Hyak;Deedra Nicolet;Jessica Kohlschmidt;Kellie J. Archer;James S. Blachly;Karilyn T. Larkin;Bayard L. Powell;Jonathan E. Kolitz;Maria R. Baer;William G. Blum;Geoffrey L. Uy;Wendy Stock;Richard M. Stone;John C. Byrd;Krzysztof Mrózek;Ann-Kathrin Eisfeld;Alice S. Mims - 通讯作者:
Alice S. Mims
Comparing genetic profiles of embryonic day 9 (E9) mouse yolk sac erythroid and erythroid and epithelial cells isolated by microdissection
- DOI:
10.1016/j.bcmd.2006.10.124 - 发表时间:
2007-03-01 - 期刊:
- 影响因子:
- 作者:
Latasha C. Redmond;Jack L. Haar;Catherine I. Dumur;Kellie J. Archer;Priyadarshi Basu;Joyce A. Lloyd - 通讯作者:
Joyce A. Lloyd
Beat-AML 2024 ELN–refined risk stratification for older adults with newly diagnosed AML given lower-intensity therapy
- DOI:
10.1182/bloodadvances.2024013685 - 发表时间:
2024-10-22 - 期刊:
- 影响因子:
- 作者:
Fieke W. Hoff;William G. Blum;Ying Huang;Rina Li Welkie;Ronan T. Swords;Elie Traer;Eytan M. Stein;Tara L. Lin;Kellie J. Archer;Prapti A. Patel;Robert H. Collins;Maria R. Baer;Vu H. Duong;Martha L. Arellano;Wendy Stock;Olatoyosi Odenike;Robert L. Redner;Tibor Kovacsovics;Michael W. Deininger;Joshua F. Zeidner - 通讯作者:
Joshua F. Zeidner
Improving risk stratification for 2022 European LeukemiaNet favorable-risk patients with acute myeloid leukemia
- DOI:
10.1016/j.xinn.2024.100719 - 发表时间:
2024-11-04 - 期刊:
- 影响因子:
- 作者:
Kellie J. Archer;Han Fu;Krzysztof Mrózek;Deedra Nicolet;Alice S. Mims;Geoffrey L. Uy;Wendy Stock;John C. Byrd;Wolfgang Hiddemann;Klaus H. Metzeler;Christian Rausch;Utz Krug;Cristina Sauerland;Dennis Görlich;Wolfgang E. Berdel;Bernhard J. Woermann;Jan Braess;Karsten Spiekermann;Tobias Herold;Ann-Kathrin Eisfeld - 通讯作者:
Ann-Kathrin Eisfeld
Kellie J. Archer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kellie J. Archer', 18)}}的其他基金
Pretransplant comprehensive scores to predict long term graft outcomes
移植前综合评分可预测长期移植结果
- 批准号:
10679624 - 财政年份:2023
- 资助金额:
$ 25.97万 - 项目类别:
Penalized mixture cure models for identifying genomic features associated with outcome in acute myeloid leukemia
用于识别与急性髓系白血病结果相关的基因组特征的惩罚混合治疗模型
- 批准号:
10544523 - 财政年份:2022
- 资助金额:
$ 25.97万 - 项目类别:
Assessment of Donor Quality for Improving Kidney Transplant Outcomes
评估捐献者质量以改善肾移植结果
- 批准号:
9262665 - 财政年份:2017
- 资助金额:
$ 25.97万 - 项目类别:
Assessment of Donor Quality for Improving Kidney Transplant Outcomes
评估捐献者质量以改善肾移植结果
- 批准号:
10203464 - 财政年份:2017
- 资助金额:
$ 25.97万 - 项目类别:
Assessment of Donor Quality for Improving Kidney Transplant Outcomes
评估捐献者质量以改善肾移植结果
- 批准号:
9753687 - 财政年份:2017
- 资助金额:
$ 25.97万 - 项目类别:
Informatic tools for predicting an ordinal response for high-dimensional data
用于预测高维数据顺序响应的信息工具
- 批准号:
9273725 - 财政年份:2012
- 资助金额:
$ 25.97万 - 项目类别:
Informatic tools for predicting an ordinal response for high-dimensional data
用于预测高维数据顺序响应的信息工具
- 批准号:
8714054 - 财政年份:2012
- 资助金额:
$ 25.97万 - 项目类别:
Informatic tools for predicting an ordinal response for high-dimensional data
用于预测高维数据顺序响应的信息工具
- 批准号:
8216289 - 财政年份:2012
- 资助金额:
$ 25.97万 - 项目类别:
Recursive partitioning and ensemble methods for classifying an ordinal response
用于对序数响应进行分类的递归划分和集成方法
- 批准号:
7805045 - 财政年份:2009
- 资助金额:
$ 25.97万 - 项目类别:
Recursive partitioning and ensemble methods for classifying an ordinal response
用于对序数响应进行分类的递归划分和集成方法
- 批准号:
7670456 - 财政年份:2008
- 资助金额:
$ 25.97万 - 项目类别:
相似海外基金
HLA-homozygous iPSC-cardiomyocytE Aggregate manufacturing technoLogies for allogenic cell therapy to the heart (HEAL)
HLA-纯合 iPSC-心肌细胞 用于心脏同种异体细胞治疗 (HEAL) 的聚集体制造技术
- 批准号:
10039902 - 财政年份:2022
- 资助金额:
$ 25.97万 - 项目类别:
EU-Funded
Evaluation of the efficacy of LAT1 inhibitor to tumor stroma and immunity in an allogenic mouse model of colon cancer having abundant stroma.
在具有丰富基质的同种异体结肠癌小鼠模型中评估 LAT1 抑制剂对肿瘤基质和免疫的功效。
- 批准号:
21K15925 - 财政年份:2021
- 资助金额:
$ 25.97万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Mechanism of kidney injury associated with graft-versus-host disease after allogenic stem cell transplantation
同种异体干细胞移植后移植物抗宿主病相关肾损伤的机制
- 批准号:
21K08410 - 财政年份:2021
- 资助金额:
$ 25.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Clarification of the origin and maintenance mechanisms of junctional epithelium and identification of its stem cells using allogenic tooth germ transplantation
阐明交界上皮的起源和维持机制并利用同种异体牙胚移植鉴定其干细胞
- 批准号:
20K21672 - 财政年份:2020
- 资助金额:
$ 25.97万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
The study about the allogenic MSCs transplantation to the cardiac disease models.
同种异体间充质干细胞移植至心脏病模型的研究。
- 批准号:
18K16395 - 财政年份:2018
- 资助金额:
$ 25.97万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Artificial nerves containing allogenic basal lamellae scaffold and bone marrow derived stem cells
含有同种异体基底板层支架和骨髓干细胞的人工神经
- 批准号:
17K10951 - 财政年份:2017
- 资助金额:
$ 25.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Role of HSP90-alpha in preserving immunoprivilege of allogenic mesenchymal stem cells in the ischemic heart
HSP90-α 在保护缺血心脏同种异体间充质干细胞免疫特权中的作用
- 批准号:
370541 - 财政年份:2017
- 资助金额:
$ 25.97万 - 项目类别:
Operating Grants
Attempt to Prefabricate Vascularized Allogenic Bone in Recipient -Use of Cultured Bone Marrow Cells-
尝试在受者体内预制血管化的同种异体骨 - 使用培养的骨髓细胞 -
- 批准号:
16K10863 - 财政年份:2016
- 资助金额:
$ 25.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Allogenic micobiota-reconstitution (AMR) for the treatment of patients with diarhea-predominant irritable bowel syndrome (IBS-D) - the AMIRA trial
同种异体微生物群重建 (AMR) 用于治疗腹泻型肠易激综合征 (IBS-D) 患者 - AMIRA 试验
- 批准号:
276706135 - 财政年份:2015
- 资助金额:
$ 25.97万 - 项目类别:
Clinical Trials
Induction of thyme epithelial cells from iPS cells and application to allogenic transplantation
iPS细胞诱导百里香上皮细胞及其在同种异体移植中的应用
- 批准号:
15H04915 - 财政年份:2015
- 资助金额:
$ 25.97万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




