Penalized mixture cure models for identifying genomic features associated with outcome in acute myeloid leukemia
用于识别与急性髓系白血病结果相关的基因组特征的惩罚混合治疗模型
基本信息
- 批准号:10340087
- 负责人:
- 金额:$ 25.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:Acute Myelocytic LeukemiaAllogenicAmerican Cancer SocietyArchivesBiologicalBiological AssayCessation of lifeCharacteristicsChronicClinicalClinical TrialsClipComputer softwareCox Proportional Hazards ModelsDataData AnalysesData ScienceData SetDecision MakingDevelopmentDiagnosisDiseaseDisease-Free SurvivalEffectivenessEventGene ExpressionGenesGenomicsMalignant NeoplasmsMethodologyMethodsMethylationMicroRNAsModalityModelingMolecularMutationOncologyOutcomePatientsPerformancePopulation StudyProbabilityProcessPrognosisPropertyRUNX1 geneResearchResearch PersonnelResearch Project GrantsRiskSample SizeSamplingSampling StudiesStatistical MethodsStem cell transplantSubgroupSystemTechniquesTechnologyTestingThe Cancer Genome AtlasTherapeuticTherapeutic AgentsTimeTissue SampleUnited States National Library of Medicineagedbiomedical informaticscancer typechemotherapyclinical practicedata curationexperiencefollow-uphazardhigh dimensionalityimprovedinterestmRNA Expressionmultidimensional datanew therapeutic targetnovelprognosticrisk stratificationsemiparametricsimulationsoftware developmentsurvival outcomesurvivorshiptargeted treatmenttherapeutic target
项目摘要
Molecular features associated with time-to-event outcomes, such as overall or disease-free survival, may be
prognostically relevant or potential therapeutic targets. Therefore, analyzing data from high-throughput genomic
assays with clinical follow-up data has been of growing interest. The Cancer Genome Atlas (TCGA) Project has
collected baseline demographic, clinical characteristics, and follow-up data for 11,125 patients for 32 different
cancer types and corresponding tissue samples were processed for examining SNPs, copy number, methylation,
miRNA expression, and mRNA expression. Because the number of variables (P ) exceeds the sample size (N),
one strategy frequently employed when associating molecular features to survivorship data is to fit univariable
Cox proportional hazards (PH) models followed by adjustment for multiple hypothesis tests using a false discovery
rate approach. However, most chronic conditions and diseases, including cancer, are likely caused by multiple
dysregulated genes or mutations. It is therefore critical to fit multivariable models in the presence of a high-
dimensional covariate space. Traditional statistical methods cannot be used when the number of features exceeds
the sample size (e.g., P > N), though penalized methods perform automatic variable selection and accommodate
the P > N scenario. Penalized approaches including LASSO, smoothly clipped absolute deviation (SCAD),
adaptive LASSO, and Bayesian LASSO have all been extended to Cox's PH model for handling high-dimensional
covariate spaces. However, when modeling survival or other time-to-event outcomes, the Cox PH model assumes
that all subjects will experience the event of interest, which is violated when a subset of subjects are cured.
Instead, when a subset of subjects in the data are cured, mixture cure models should be fit. Although mixture
cure models have been described for traditional settings where the number of samples exceeds the number
of covariates, limited variable selection methods and no methods for high-dimensional model fitting currently
exist for mixture cure models. Therefore, this project will overcome a critical barrier to progress in this field
by developing penalized parametric and semi-parametric mixture cure models applicable for high-dimensional
datasets. The specific aims of this application are to: (1) Develop penalized parametric mixture cure models
for high-dimensional datasets; and (2) Develop a penalized semi-parametric proportional hazards mixture cure
model for high-dimensional datasets. For both aims we will characterize the performance of the methods using
extensive simulation studies, develop software, and distribute R packages to CRAN. In aim (3) we will identify
molecular features associated with cure and survival using our large unique AML dataset from the Alliance for
Clinical Trials in Oncology and assess robustness of findings using AML datasets from Gene Expression Omnibus
and The Cancer Genome Atlas project. This research will fill a critical gap as there are currently no mixture cure
models for high-dimensional data. We anticipate application of our methods to our AML data will enhance existing
risk stratification systems used in daily clinical practice that determine treatment intensity and modality.
与至事件发生时间结局相关的分子特征,如总生存期或无病生存期,可能是
临床相关或潜在的治疗靶点。因此,分析来自高通量基因组的数据,
具有临床随访数据的分析越来越受到关注。癌症基因组图谱(TCGA)计划
收集了11,125名患者的基线人口统计学、临床特征和随访数据,
处理癌症类型和相应的组织样品以检查SNP、拷贝数、甲基化,
miRNA表达和mRNA表达。因为变量的数量(P)超过样本量(N),
当将分子特征与存活数据相关联时,经常采用的一种策略是拟合单变量
考克斯比例风险(PH)模型,随后使用错误发现调整多个假设检验
率方法。然而,大多数慢性病和疾病,包括癌症,可能是由多种原因引起的。
失调的基因或突变。因此,在存在高风险的情况下拟合多变量模型至关重要,
维协变量空间传统的统计方法在特征数量超过
样本大小(例如,P > N),尽管惩罚方法执行自动变量选择并适应
P > N的情况。惩罚方法包括LASSO、平滑剪切绝对偏差(SCAD),
自适应LASSO和贝叶斯LASSO都被扩展到考克斯的PH模型来处理高维问题
协变量空间然而,当对生存或其他至事件发生时间结局建模时,考克斯PH模型假设
所有受试者将经历感兴趣的事件,当受试者的子集被治愈时,这是违反的。
相反,当数据中的受试者子集被治愈时,应该拟合混合治愈模型。虽然混合物
已经描述了用于传统设置的固化模型
协变量多,变量选择方法有限,目前尚无高维模型拟合方法
存在混合固化模型。因此,该项目将克服该领域进展的关键障碍
通过开发惩罚参数和半参数混合固化模型适用于高维
数据集。具体目标是:(1)建立惩罚参数混合物硫化模型
高维数据集;(2)开发惩罚半参数比例风险混合治愈
用于高维数据集的模型。对于这两个目标,我们将使用以下方法来表征方法的性能:
广泛的模拟研究,开发软件,并将R软件包分发给CRAN。在目标(3)中,我们将确定
与治愈和生存相关的分子特征,使用我们的大型独特AML数据集,
肿瘤临床试验,并使用Gene Expression Omnibus的AML数据集评估结果的稳健性
和癌症基因组图谱项目。这项研究将填补一个关键的空白,因为目前还没有混合物治愈
高维数据的模型。我们预计将我们的方法应用于我们的AML数据将增强现有的
用于日常临床实践的风险分层系统,用于确定治疗强度和方式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kellie J. Archer其他文献
Regularized Mixture Cure Models Identify a Gene Signature That Improves Risk Stratification within the Favorable-Risk Group in 2017 European Leukemianet (ELN) Classification of Acute Myeloid Leukemia (Alliance 152010)
- DOI:
10.1182/blood-2022-166477 - 发表时间:
2022-11-15 - 期刊:
- 影响因子:
- 作者:
Kellie J. Archer;Han Fu;Krzysztof Mrózek;Deedra Nicolet;Jessica Kohlschmidt;Alice S. Mims;Geoffrey L. Uy;Wendy Stock;John C. Byrd;Ann-Kathrin Eisfeld - 通讯作者:
Ann-Kathrin Eisfeld
Characterization of Survival Outcomes and Clinical and Molecular Modulators in Adult Patients with Core-Binding Factor Acute Myeloid Leukemia (CBF-AML) Treated with Hidac Consolidation: An Alliance Legacy Study
- DOI:
10.1182/blood-2022-167210 - 发表时间:
2022-11-15 - 期刊:
- 影响因子:
- 作者:
Jonathan Hyak;Deedra Nicolet;Jessica Kohlschmidt;Kellie J. Archer;James S. Blachly;Karilyn T. Larkin;Bayard L. Powell;Jonathan E. Kolitz;Maria R. Baer;William G. Blum;Geoffrey L. Uy;Wendy Stock;Richard M. Stone;John C. Byrd;Krzysztof Mrózek;Ann-Kathrin Eisfeld;Alice S. Mims - 通讯作者:
Alice S. Mims
Comparing genetic profiles of embryonic day 9 (E9) mouse yolk sac erythroid and erythroid and epithelial cells isolated by microdissection
- DOI:
10.1016/j.bcmd.2006.10.124 - 发表时间:
2007-03-01 - 期刊:
- 影响因子:
- 作者:
Latasha C. Redmond;Jack L. Haar;Catherine I. Dumur;Kellie J. Archer;Priyadarshi Basu;Joyce A. Lloyd - 通讯作者:
Joyce A. Lloyd
Beat-AML 2024 ELN–refined risk stratification for older adults with newly diagnosed AML given lower-intensity therapy
- DOI:
10.1182/bloodadvances.2024013685 - 发表时间:
2024-10-22 - 期刊:
- 影响因子:
- 作者:
Fieke W. Hoff;William G. Blum;Ying Huang;Rina Li Welkie;Ronan T. Swords;Elie Traer;Eytan M. Stein;Tara L. Lin;Kellie J. Archer;Prapti A. Patel;Robert H. Collins;Maria R. Baer;Vu H. Duong;Martha L. Arellano;Wendy Stock;Olatoyosi Odenike;Robert L. Redner;Tibor Kovacsovics;Michael W. Deininger;Joshua F. Zeidner - 通讯作者:
Joshua F. Zeidner
Outcome Prediction By the New 2022 European Leukemia Net (ELN) Genetic-Risk Classification for Adult Patients (Pts) with Acute Myeloid Leukemia (AML): An Alliance Study
- DOI:
10.1182/blood-2022-167352 - 发表时间:
2022-11-15 - 期刊:
- 影响因子:
- 作者:
Krzysztof Mrózek;Jessica Kohlschmidt;James S. Blachly;Deedra Nicolet;Andrew J. Carroll;Kellie J. Archer;Alice S. Mims;Karilyn T. Larkin;Shelley Orwick;Christopher C. Oakes;Jonathan E. Kolitz;Bayard L. Powell;William G. Blum;Guido Marcucci;Maria R. Baer;Geoffrey L. Uy;Wendy Stock;John C. Byrd;Ann-Kathrin Eisfeld - 通讯作者:
Ann-Kathrin Eisfeld
Kellie J. Archer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kellie J. Archer', 18)}}的其他基金
Pretransplant comprehensive scores to predict long term graft outcomes
移植前综合评分可预测长期移植结果
- 批准号:
10679624 - 财政年份:2023
- 资助金额:
$ 25.97万 - 项目类别:
Penalized mixture cure models for identifying genomic features associated with outcome in acute myeloid leukemia
用于识别与急性髓系白血病结果相关的基因组特征的惩罚混合治疗模型
- 批准号:
10544523 - 财政年份:2022
- 资助金额:
$ 25.97万 - 项目类别:
Assessment of Donor Quality for Improving Kidney Transplant Outcomes
评估捐献者质量以改善肾移植结果
- 批准号:
9262665 - 财政年份:2017
- 资助金额:
$ 25.97万 - 项目类别:
Assessment of Donor Quality for Improving Kidney Transplant Outcomes
评估捐献者质量以改善肾移植结果
- 批准号:
10203464 - 财政年份:2017
- 资助金额:
$ 25.97万 - 项目类别:
Assessment of Donor Quality for Improving Kidney Transplant Outcomes
评估捐献者质量以改善肾移植结果
- 批准号:
9753687 - 财政年份:2017
- 资助金额:
$ 25.97万 - 项目类别:
Informatic tools for predicting an ordinal response for high-dimensional data
用于预测高维数据顺序响应的信息工具
- 批准号:
9273725 - 财政年份:2012
- 资助金额:
$ 25.97万 - 项目类别:
Informatic tools for predicting an ordinal response for high-dimensional data
用于预测高维数据顺序响应的信息工具
- 批准号:
8714054 - 财政年份:2012
- 资助金额:
$ 25.97万 - 项目类别:
Informatic tools for predicting an ordinal response for high-dimensional data
用于预测高维数据顺序响应的信息工具
- 批准号:
8216289 - 财政年份:2012
- 资助金额:
$ 25.97万 - 项目类别:
Recursive partitioning and ensemble methods for classifying an ordinal response
用于对序数响应进行分类的递归划分和集成方法
- 批准号:
7805045 - 财政年份:2009
- 资助金额:
$ 25.97万 - 项目类别:
Recursive partitioning and ensemble methods for classifying an ordinal response
用于对序数响应进行分类的递归划分和集成方法
- 批准号:
7670456 - 财政年份:2008
- 资助金额:
$ 25.97万 - 项目类别:
相似海外基金
HLA-homozygous iPSC-cardiomyocytE Aggregate manufacturing technoLogies for allogenic cell therapy to the heart (HEAL)
HLA-纯合 iPSC-心肌细胞 用于心脏同种异体细胞治疗 (HEAL) 的聚集体制造技术
- 批准号:
10039902 - 财政年份:2022
- 资助金额:
$ 25.97万 - 项目类别:
EU-Funded
Evaluation of the efficacy of LAT1 inhibitor to tumor stroma and immunity in an allogenic mouse model of colon cancer having abundant stroma.
在具有丰富基质的同种异体结肠癌小鼠模型中评估 LAT1 抑制剂对肿瘤基质和免疫的功效。
- 批准号:
21K15925 - 财政年份:2021
- 资助金额:
$ 25.97万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Mechanism of kidney injury associated with graft-versus-host disease after allogenic stem cell transplantation
同种异体干细胞移植后移植物抗宿主病相关肾损伤的机制
- 批准号:
21K08410 - 财政年份:2021
- 资助金额:
$ 25.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Clarification of the origin and maintenance mechanisms of junctional epithelium and identification of its stem cells using allogenic tooth germ transplantation
阐明交界上皮的起源和维持机制并利用同种异体牙胚移植鉴定其干细胞
- 批准号:
20K21672 - 财政年份:2020
- 资助金额:
$ 25.97万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
The study about the allogenic MSCs transplantation to the cardiac disease models.
同种异体间充质干细胞移植至心脏病模型的研究。
- 批准号:
18K16395 - 财政年份:2018
- 资助金额:
$ 25.97万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Artificial nerves containing allogenic basal lamellae scaffold and bone marrow derived stem cells
含有同种异体基底板层支架和骨髓干细胞的人工神经
- 批准号:
17K10951 - 财政年份:2017
- 资助金额:
$ 25.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Role of HSP90-alpha in preserving immunoprivilege of allogenic mesenchymal stem cells in the ischemic heart
HSP90-α 在保护缺血心脏同种异体间充质干细胞免疫特权中的作用
- 批准号:
370541 - 财政年份:2017
- 资助金额:
$ 25.97万 - 项目类别:
Operating Grants
Attempt to Prefabricate Vascularized Allogenic Bone in Recipient -Use of Cultured Bone Marrow Cells-
尝试在受者体内预制血管化的同种异体骨 - 使用培养的骨髓细胞 -
- 批准号:
16K10863 - 财政年份:2016
- 资助金额:
$ 25.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Allogenic micobiota-reconstitution (AMR) for the treatment of patients with diarhea-predominant irritable bowel syndrome (IBS-D) - the AMIRA trial
同种异体微生物群重建 (AMR) 用于治疗腹泻型肠易激综合征 (IBS-D) 患者 - AMIRA 试验
- 批准号:
276706135 - 财政年份:2015
- 资助金额:
$ 25.97万 - 项目类别:
Clinical Trials
Induction of thyme epithelial cells from iPS cells and application to allogenic transplantation
iPS细胞诱导百里香上皮细胞及其在同种异体移植中的应用
- 批准号:
15H04915 - 财政年份:2015
- 资助金额:
$ 25.97万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




