RNA Binding Proteins in Complex Neurological Disease
复杂神经系统疾病中的 RNA 结合蛋白
基本信息
- 批准号:8858948
- 负责人:
- 金额:$ 39.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-02-01 至 2016-01-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAction PotentialsAddressAdultAnimal ModelAnimalsAutistic DisorderBackBehaviorBindingBinding SitesBrainBrain DiseasesCell LineCellsCentral Nervous System DiseasesCerebral cortexClustered Regularly Interspaced Short Palindromic RepeatsComplexCuesCytoplasmic GranulesDataDevelopmentDiseaseDissectionDoseDrosophila genusEmployee StrikesEpilepsyEquilibriumEtiologyFMR1FMRPFailureFamilyFragile X Mental Retardation ProteinFragile X SyndromeFunctional disorderFundingGene Expression ProfileGene TargetingGenesGeneticGenetic TranslationGenomic approachGenotypeHippocampus (Brain)HomeostasisHumanHyperactive behaviorIndividualIntellectual functioning disabilityIon ChannelLeadLearningLocationMembrane PotentialsMental disordersMessenger RNAMetabolismMild obesityModelingMolecularMusMutagenesisMutant Strains MiceMutateNatureNeurologicNeuronsNeuropilNeurotransmitter ReceptorOrthologous GeneOutcomePathologyPatientsPatternPhenotypePhysiologicalPolyribosomesPredispositionProteinsRNARNA BindingRNA-Binding ProteinsRecyclingRegulationResearchRoleSCN8A geneSchizophreniaSeizuresSignal TransductionSocial InteractionSodium ChannelSucroseSymptomsSynapsesSynaptic VesiclesSynaptic plasticitySystemTestingTransgenesTranslatingTranslationsUntranslated RegionsVariantVisionWorkcomplex biological systemsdensitydisabilityexcitatory neurongenetic variantgenome sequencingin vivointerestmembermutantnervous system disorderneuron developmentneuronal cell bodyneuronal excitabilityneurotransmissionnon-geneticparticlepostnatalprogramspublic health relevancesocialsuccesssynaptic functiontranscriptome sequencing
项目摘要
DESCRIPTION (provided by applicant): Many factors make genetically complex diseases complex. Classically they are defined as an interaction between multiple genetic variants and non-genetic factors. Progress in genome sequencing and within-species variation has generated much interest in identifying polygenic variants from human and model organisms, with some success. But one cannot lose sight of the importance of physiological complexity; even Mendelian variants can wreak havoc when operating in a complex biological system. For functional phenotypes, such as excitability disorders of the CNS, this concept is understudied. Epilepsy is genetically complex to be sure, but as the canonical excitability disorder of the brain it also serves as a leading example for approaching other, harder-to-crack functional disorders, such as autism and schizophrenia, that are also likely to have excito-pathology at their cores. Neuronal excitability is determined primarily by molecules, such as ion channels and transporters, neurotransmitter receptors, and synaptic proteins, controlling membrane potential and synaptic signaling in order to achieve an appropriate balance of excitation and inhibition. Although cis-variants in genes encoding these molecules can lead to specific phenotypes, trans-factors that regulate their expression must be critical for maintaining this balance at a higher, coordinated level. We previously identified and characterized hypomorphic and null genotypes in Celf4 (formerly known as Brunol4), encoding a brain-specific member of the BRUNO/CUGBP/CELF family of RNA binding proteins. Celf4 mutants have a complex seizure disorder and other neurological phenotypes, such as hyperactivity, mild obesity and abnormal social interaction. Very recently human CELF4 deficiency revealed these and additional symptoms, such as intellectual disability. In our initial funding period, we found that CELF4 is most tightly associated with very high-density RNA granule particles and targets a vast number of mRNAs in excitatory neurons. Many targets are involved in synaptic functions, and they tend to be dysregulated within neurons of mutant mice - in all directions, but with a tendency towards increased expression away from the cell body. These findings are consistent with a role for CELF4 in control "translational silencing" perhaps at local, subcellular levels. We also obtained evidence for CELF4 effects on intrinsic neuronal hyperexcitation, via increased expression of sodium channel Nav1.6, and system-wide dysregulation via impaired homeostatic plasticity presumably due to dysregulation of synaptic proteins. Our hypothesis is that the combination of such effects accounts for full-blown disease. In the next 5 years, our research will address two prevailing themes that work together to address this idea. The first addresses the pattern of CELF4 binding motifs within the 3'-UTR of target mRNAs, and the consequences of altering the motifs on mRNA abundance, localization and translation, both transcriptome-wide and for selected targets. The second theme uses in vivo mutagenesis to assess the contribution of individual targets to the multigenic etiology of complex neurological phenotypes.
描述(由申请人提供):许多因素使遗传复杂的疾病变得复杂。传统上,它们被定义为多种遗传变异和非遗传因素之间的相互作用。基因组测序和物种内变异的进展已经在识别来自人类和模式生物的多基因变异方面产生了很大的兴趣,并取得了一些成功。但我们不能忽视生理复杂性的重要性;即使是孟德尔变异体在复杂的生物系统中运行时也会造成严重破坏。对于功能表型,如中枢神经系统的兴奋性障碍,这一概念是研究不足。癫痫在遗传学上确实很复杂,但作为典型的大脑兴奋性障碍,它也是研究其他更难破解的功能性障碍的主要例子,如自闭症和精神分裂症,这些疾病也可能以兴奋性病理学为核心。神经元兴奋性主要由分子决定,如离子通道和转运蛋白、神经递质受体和突触蛋白,控制膜电位和突触信号传导,以实现兴奋和抑制的适当平衡。虽然编码这些分子的基因中的顺式变体可以导致特定的表型,但调节其表达的反式因子对于在更高的协调水平上维持这种平衡至关重要。我们以前确定和特征化的亚纯型和无效基因型Celf 4(以前称为Brunol 4),编码的RNA结合蛋白的BRUNO/CUGBP/CELF家族的脑特异性成员。Celf 4突变体具有复杂的癫痫发作障碍和其他神经学表型,如多动,轻度肥胖和异常的社会互动。最近,人类CELF 4缺乏症揭示了这些和其他症状,如智力残疾。在我们最初的资助期间,我们发现CELF 4与非常高密度的RNA颗粒颗粒最紧密相关,并靶向兴奋性神经元中的大量mRNA。许多靶点参与突触功能,它们往往在突变小鼠的神经元内失调-在所有方向上,但有远离细胞体表达增加的趋势。这些发现与CELF 4可能在局部亚细胞水平上控制“翻译沉默”的作用一致。我们还获得了CELF 4通过增加钠通道Nav1.6的表达对内源性神经元过度兴奋的影响的证据,以及通过受损的稳态可塑性(推测是由于突触蛋白的失调)对全系统失调的影响。我们的假设是,这些影响的结合导致了全面的疾病。在接下来的5年里,我们的研究将解决两个共同解决这一问题的流行主题。第一个解决了靶mRNA的3 '-UTR内CELF 4结合基序的模式,以及改变基序对mRNA丰度、定位和翻译的影响,包括转录组范围和选定的靶。第二个主题使用体内诱变来评估单个靶点对复杂神经表型的多基因病因学的贡献。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
WAYNE N. FRANKEL其他文献
WAYNE N. FRANKEL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('WAYNE N. FRANKEL', 18)}}的其他基金
Thalamocortical network dysfunction in a novel genetic model of GRIN2D developmental and epileptic encephalopathy
GRIN2D 发育性和癫痫性脑病新型遗传模型中的丘脑皮质网络功能障碍
- 批准号:
10195508 - 财政年份:2021
- 资助金额:
$ 39.14万 - 项目类别:
Coming Together on Epilepsy Genetics: From Human to Model Organisms, and Back
齐聚癫痫遗传学:从人类到模式生物,再返回
- 批准号:
8205053 - 财政年份:2011
- 资助金额:
$ 39.14万 - 项目类别:
Genetic Regulation of Complex Neurological Disease
复杂神经系统疾病的基因调控
- 批准号:
7436879 - 财政年份:2008
- 资助金额:
$ 39.14万 - 项目类别:
Genetic Regulation of Complex Neurological Disease
复杂神经系统疾病的基因调控
- 批准号:
7558261 - 财政年份:2008
- 资助金额:
$ 39.14万 - 项目类别:
Genetic Regulation of Complex Neurological Disease
复杂神经系统疾病的基因调控
- 批准号:
8015973 - 财政年份:2008
- 资助金额:
$ 39.14万 - 项目类别:
Genetic Regulation of Complex Neurological Disease
复杂神经系统疾病的基因调控
- 批准号:
7810175 - 财政年份:2008
- 资助金额:
$ 39.14万 - 项目类别:
Genetic Regulation of Complex Neurological Disease
复杂神经系统疾病的基因调控
- 批准号:
8213760 - 财政年份:2008
- 资助金额:
$ 39.14万 - 项目类别:
Genetic Regulation of Complex Neurological Diseases
复杂神经系统疾病的基因调控
- 批准号:
8679054 - 财政年份:2008
- 资助金额:
$ 39.14万 - 项目类别:
相似海外基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 39.14万 - 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
- 批准号:
422915148 - 财政年份:2019
- 资助金额:
$ 39.14万 - 项目类别:
Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
- 批准号:
1752274 - 财政年份:2018
- 资助金额:
$ 39.14万 - 项目类别:
Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
- 批准号:
18H03539 - 财政年份:2018
- 资助金额:
$ 39.14万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
- 批准号:
9588470 - 财政年份:2018
- 资助金额:
$ 39.14万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10009724 - 财政年份:2018
- 资助金额:
$ 39.14万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10467225 - 财政年份:2018
- 资助金额:
$ 39.14万 - 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
- 批准号:
9423398 - 财政年份:2017
- 资助金额:
$ 39.14万 - 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
- 批准号:
9357409 - 财政年份:2016
- 资助金额:
$ 39.14万 - 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
- 批准号:
16K07006 - 财政年份:2016
- 资助金额:
$ 39.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




