Controllable In Vivo Genome Editing for Immune-Checkpoint Blockade in Solid Tumors
用于实体瘤免疫检查点封锁的可控体内基因组编辑
基本信息
- 批准号:9939589
- 负责人:
- 金额:$ 49.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-21 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdvanced Malignant NeoplasmAdverse effectsAgonistAllograftingAntibodiesAntigen-Antibody ComplexAntitumor ResponseBiodistributionCRISPR/Cas technologyCancer PatientCell Culture TechniquesClinicalClinical ResearchClustered Regularly Interspaced Short Palindromic RepeatsColon AdenocarcinomaCombination immunotherapyCombined Modality TherapyComplexCoupledDNA Double Strand BreakDNA SequenceDataDevelopmentDisease remissionDrug KineticsEndocytosisEngineeringGene DeletionGenesGeneticGenomeGuide RNAHumanHybridsImmuneImmune checkpoint inhibitorImmune responseImmune systemImmunityImmunologicsImmunooncologyImmunotherapeutic agentImmunotherapyIn VitroIndividualInsect VirusesLeadLightMC38Magnetic nanoparticlesMagnetismMalignant NeoplasmsMediatingModelingModificationMusNatural ImmunityNonhomologous DNA End JoiningNormal tissue morphologyOX40OrganPD-1 blockadePD-L1 blockadePancreatic Ductal AdenocarcinomaPathologic ProcessesPathway interactionsPhenotypeProteinsSignal TransductionSolid NeoplasmSpecificitySystemTestingTherapeuticTherapeutic EffectTissuesTreatment EfficacyTumor ImmunityTumor TissueViralViral Vectoranti-canceranti-tumor immune responsebasecancer heterogeneitycancer immunotherapycancer typeclinical applicationclinical translationdesignengineered nucleasesgene delivery systemgenome editinggenotoxicityhuman diseaseimage guidedimmune checkpointimmune checkpoint blockadeimmunoengineeringimmunogenicin vivoindividual patientinsertion/deletion mutationiron oxide nanoparticlemagnetic fieldmouse modelmultiplexed imagingnovelnucleasepancreatic ductal adenocarcinoma modelpatient subsetspersonalized strategiespreclinical studyprogrammed cell death ligand 1responsesuccesstherapeutic genome editingtherapeutically effectivetransduction efficiencytumortumor microenvironmentvectorvector-inducedviral nanoparticle
项目摘要
Project Summary
The blockade of immune-checkpoint pathways has emerged as a promising therapeutic strategy for a variety
of cancers. However, the diverse tumor responses to immunotherapy seen in preclinical and clinical studies
prompt the development of combination immunotherapies that can be tailored to the complex immune milieu
of individual patients. On the other hand, the severe adverse effects associated with the combination therapies
with multiple antagonist antibodies address the necessity for alternative safe and effective therapeutic
approaches. In light of this, we aim to develop a hybrid nanoparticle-viral vector system for CRISPR/Cas9-
based in vivo therapeutic genome editing, which will be used for multiplexed disruption of immune suppressive
pathways in the tumor microenvironment. CRISPR/Cas9 systems are very efficient in generating DNA double-
strand breaks, thus disrupting genes through the non-homologous end-joining (NHEJ) pathway. However,
inducing uncontrolled CRISPR/Cas9 activities in vivo may lead to systemic genotoxicity. We will develop a
novel in vivo gene delivery system that integrates a baculoviral vector (BV) with magnetic nanoparticles
(MNPs). Our studies have shown that by taking advantage of the interplay between the MNP-mediated BV
margination and endocytosis and the innate immunity against insect viruses, this delivery system can provide
spatial and temporal control of CRISPR/Cas9 activity. We will use the MNP-BV system to deliver optimized
CRISPR/Cas9 for gene disruption of immune suppressive signals PD-L1 and TGF- in the tumor tissue. We
will evaluate CRISPR/Cas9 induced anti-tumor immune responses using two well-established mouse models,
an immunogenic model (MC38) where monotherapy with PD-1 blockade is sufficient, and non-immunogenic
models pancreatic ductal adenocarcinoma (PDAC) which portrays most non-immunogenic human solid
tumors that require combination strategies. In aim 1 studies, we will design and optimize CRISPR/Cas9
gRNAs for targeting PD-L1 and TGF-, package Cas9 and gRNAs into a BV vector, and construct the MNP-
BV system. In aim 2 studies, we will evaluate MNP-BV-induced multiplexed gene disruption in cell culture,
and determine the on-target and off-target indel rates. In aim 3 studies, we will test the controlled in vivo
delivery of CRISPR/Cas9, determine the immunological and therapeutic effects of local gene disruption vs.
systemic blockade with antagonist antibody in mouse tumor models. The success of the proposed studies will
provide a multiplexed intratumoral immunoengineering platform and pave the way for the clinical translation
of a highly efficient in vivo genome editing strategy for personalized cancer immunotherapy.
项目摘要
阻断免疫检查点通路已成为治疗多种疾病的一种有希望的策略。
癌症。然而,在临床前和临床研究中看到的对免疫治疗的不同肿瘤反应
促进针对复杂免疫环境量身定做的联合免疫疗法的发展
个别病人的情况。另一方面,与联合治疗相关的严重不良反应
使用多种拮抗剂抗体解决了替代安全有效治疗的必要性
接近了。有鉴于此,我们的目标是开发一种针对CRISPR/Cas9的纳米颗粒-病毒混合载体系统。
基于体内治疗性基因组编辑,将用于免疫抑制的多路中断
肿瘤微环境中的通路。CRISPR/Cas9系统在产生DNA双基因的过程中非常有效
链断裂,从而通过非同源末端连接(NHEJ)途径扰乱基因。然而,
在体内诱导不受控制的CRISPR/Cas9活性可能导致全身遗传毒性。我们将开发一种
整合杆状病毒载体和磁性纳米颗粒的新型体内基因递送系统
(MNPs)。我们的研究表明,通过利用MNP介导的BV之间的相互作用
边际作用和内吞作用以及对昆虫病毒的天然免疫力,这种递送系统可以提供
CRISPR/Cas9活性的时空控制。我们将使用MNP-BV系统提供优化的
CRISPR/CAS9用于阻断肿瘤组织中免疫抑制信号PD-L1和转化生长因子-的基因。我们
将使用两个成熟的小鼠模型评估CRISPR/Cas9诱导的抗肿瘤免疫反应,
一种免疫原性模型(MC38),其中PD-1阻断的单一治疗就足够了,并且是非免疫原性的
模型胰腺导管腺癌(PDAC),它描绘了大多数非免疫原性的人类实体
需要联合治疗的肿瘤。在目标1研究中,我们将设计和优化CRISPR/CAS9
靶向PD-L1和转化生长因子-的GRNAs,将CAS9和GRNAs包装到BV载体中,构建MNP-
BV系统。在Aim 2研究中,我们将评估MNP-BV在细胞培养中诱导的多重基因破坏,
并确定目标上和目标外的插入率。在Aim 3研究中,我们将在体内测试对照
CRISPR/Cas9的交付,确定局部基因破坏的免疫和治疗效果与
拮抗抗体对小鼠肿瘤模型的全身阻断作用。拟议研究的成功将
提供多元化的肿瘤内免疫工程平台,为临床翻译铺平道路
一种用于个性化癌症免疫治疗的高效体内基因组编辑策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sheng Tong其他文献
Sheng Tong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sheng Tong', 18)}}的其他基金
Precise in vivo gene editing of HSPC for the treatment of genetic hematologic diseases
HSPC体内精准基因编辑治疗遗传性血液病
- 批准号:
10548540 - 财政年份:2023
- 资助金额:
$ 49.44万 - 项目类别:
Controllable In Vivo Genome Editing for Immune-Checkpoint Blockade in Solid Tumors
用于实体瘤免疫检查点封锁的可控体内基因组编辑
- 批准号:
10456001 - 财政年份:2018
- 资助金额:
$ 49.44万 - 项目类别:
Controllable In Vivo Genome Editing for Immune-Checkpoint Blockade in Solid Tumors
用于实体瘤免疫检查点封锁的可控体内基因组编辑
- 批准号:
9767834 - 财政年份:2018
- 资助金额:
$ 49.44万 - 项目类别:
Controllable In Vivo Genome Editing for Immune-Checkpoint Blockade in Solid Tumors
用于实体瘤免疫检查点封锁的可控体内基因组编辑
- 批准号:
10047963 - 财政年份:2018
- 资助金额:
$ 49.44万 - 项目类别:














{{item.name}}会员




