Controllable In Vivo Genome Editing for Immune-Checkpoint Blockade in Solid Tumors
用于实体瘤免疫检查点封锁的可控体内基因组编辑
基本信息
- 批准号:10047963
- 负责人:
- 金额:$ 30.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-21 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdvanced Malignant NeoplasmAdverse effectsAgonistAllograftingAntibodiesAntigen-Antibody ComplexAntitumor ResponseBiodistributionCRISPR/Cas technologyCancer PatientCell Culture TechniquesClinicalClinical ResearchClustered Regularly Interspaced Short Palindromic RepeatsColon AdenocarcinomaCombination immunotherapyCombined Modality TherapyComplexCoupledDNA Double Strand BreakDNA SequenceDataDevelopmentDisease remissionDrug KineticsEndocytosisEngineeringGene DeletionGenesGeneticGenomeGuide RNAHumanHybridsImmuneImmune checkpoint inhibitorImmune responseImmune systemImmunityImmunologicsImmunooncologyImmunosuppressive AgentsImmunotherapyIn VitroIndividualInsect VirusesLeadLightMC38Magnetic nanoparticlesMagnetismMalignant NeoplasmsMediatingModelingModificationMusNatural ImmunityNonhomologous DNA End JoiningNormal tissue morphologyOX40OrganPD-1 blockadePancreatic Ductal AdenocarcinomaPathologic ProcessesPathway interactionsPhenotypeProteinsSignal TransductionSolid NeoplasmSpecificitySystemTestingTherapeuticTherapeutic EffectTissuesTreatment EfficacyTumor ImmunityTumor TissueViralViral Vectoranti-canceranti-tumor immune responsebasecancer heterogeneitycancer immunotherapycancer typeclinical applicationclinical translationdesignengineered nucleasesgene delivery systemgenome editinggenotoxicityhuman diseaseimage guidedimmune checkpointimmune checkpoint blockadeimmunoengineeringimmunogenicin vivoindividual patientinsertion/deletion mutationiron oxide nanoparticlemagnetic fieldmouse modelmultiplexed imagingnovelnucleasepatient subsetspersonalized strategiespreclinical studyprogrammed cell death ligand 1responsesuccesstherapeutic genome editingtransduction efficiencytumortumor microenvironmentvectorvector-inducedviral nanoparticle
项目摘要
Project Summary
The blockade of immune-checkpoint pathways has emerged as a promising therapeutic strategy for a variety
of cancers. However, the diverse tumor responses to immunotherapy seen in preclinical and clinical studies
prompt the development of combination immunotherapies that can be tailored to the complex immune milieu
of individual patients. On the other hand, the severe adverse effects associated with the combination therapies
with multiple antagonist antibodies address the necessity for alternative safe and effective therapeutic
approaches. In light of this, we aim to develop a hybrid nanoparticle-viral vector system for CRISPR/Cas9-
based in vivo therapeutic genome editing, which will be used for multiplexed disruption of immune suppressive
pathways in the tumor microenvironment. CRISPR/Cas9 systems are very efficient in generating DNA double-
strand breaks, thus disrupting genes through the non-homologous end-joining (NHEJ) pathway. However,
inducing uncontrolled CRISPR/Cas9 activities in vivo may lead to systemic genotoxicity. We will develop a
novel in vivo gene delivery system that integrates a baculoviral vector (BV) with magnetic nanoparticles
(MNPs). Our studies have shown that by taking advantage of the interplay between the MNP-mediated BV
margination and endocytosis and the innate immunity against insect viruses, this delivery system can provide
spatial and temporal control of CRISPR/Cas9 activity. We will use the MNP-BV system to deliver optimized
CRISPR/Cas9 for gene disruption of immune suppressive signals PD-L1 and TGF- in the tumor tissue. We
will evaluate CRISPR/Cas9 induced anti-tumor immune responses using two well-established mouse models,
an immunogenic model (MC38) where monotherapy with PD-1 blockade is sufficient, and non-immunogenic
models pancreatic ductal adenocarcinoma (PDAC) which portrays most non-immunogenic human solid
tumors that require combination strategies. In aim 1 studies, we will design and optimize CRISPR/Cas9
gRNAs for targeting PD-L1 and TGF-, package Cas9 and gRNAs into a BV vector, and construct the MNP-
BV system. In aim 2 studies, we will evaluate MNP-BV-induced multiplexed gene disruption in cell culture,
and determine the on-target and off-target indel rates. In aim 3 studies, we will test the controlled in vivo
delivery of CRISPR/Cas9, determine the immunological and therapeutic effects of local gene disruption vs.
systemic blockade with antagonist antibody in mouse tumor models. The success of the proposed studies will
provide a multiplexed intratumoral immunoengineering platform and pave the way for the clinical translation
of a highly efficient in vivo genome editing strategy for personalized cancer immunotherapy.
项目摘要
免疫检查点通路的阻断已经成为多种疾病的有希望的治疗策略。
癌症。然而,在临床前和临床研究中观察到的对免疫治疗的不同肿瘤反应,
促进可针对复杂免疫环境定制的联合免疫疗法的开发
个别患者。另一方面,与联合治疗相关的严重不良反应
使用多种拮抗剂抗体解决了替代安全有效治疗的必要性
接近。有鉴于此,我们的目标是开发一种用于CRISPR/Cas9的混合纳米颗粒-病毒载体系统。
基于体内治疗性基因组编辑,其将用于免疫抑制的多重破坏。
肿瘤微环境中的通路。CRISPR/Cas9系统在产生DNA双链方面非常有效。
链断裂,从而通过非同源末端连接(NHEJ)途径破坏基因。然而,在这方面,
在体内诱导不受控制的CRISPR/Cas9活性可能导致全身遗传毒性。我们将开发一个
整合杆状病毒载体(BV)与磁性纳米颗粒的新型体内基因递送系统
(MNP)。我们的研究表明,通过利用MNP介导的BV之间的相互作用,
边集和内吞作用以及针对昆虫病毒的先天免疫,这种递送系统可以提供
CRISPR/Cas9活性的空间和时间控制。我们将使用MNP-BV系统来提供优化的
CRISPR/Cas9用于肿瘤组织中免疫抑制信号PD-L1和TGF-β的基因破坏。我们
将使用两种良好建立的小鼠模型评估CRISPR/Cas9诱导的抗肿瘤免疫应答,
免疫原性模型(MC 38),其中PD-1阻断的单药治疗是足够的,并且非免疫原性
模型胰腺导管腺癌(PDAC),其描绘了大多数非免疫原性人类实体瘤,
需要联合治疗的肿瘤在aim 1研究中,我们将设计和优化CRISPR/Cas9
用于靶向PD-L1和TGF-β的gRNA,将Cas9和gRNA包装到BV载体中,并构建MNP-1。
BV系统。在目标2研究中,我们将评估MNP-BV诱导的细胞培养物中的多重基因破坏,
并确定在靶和脱靶插入缺失率。在aim 3研究中,我们将在体内测试对照
CRISPR/Cas9的递送,确定局部基因破坏与
在小鼠肿瘤模型中用拮抗剂抗体进行全身阻断。拟议研究的成功将
提供了一个多重的瘤内免疫工程平台,为临床转化铺平了道路。
用于个性化癌症免疫治疗的高效体内基因组编辑策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sheng Tong其他文献
Sheng Tong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sheng Tong', 18)}}的其他基金
Precise in vivo gene editing of HSPC for the treatment of genetic hematologic diseases
HSPC体内精准基因编辑治疗遗传性血液病
- 批准号:
10548540 - 财政年份:2023
- 资助金额:
$ 30.72万 - 项目类别:
Controllable In Vivo Genome Editing for Immune-Checkpoint Blockade in Solid Tumors
用于实体瘤免疫检查点封锁的可控体内基因组编辑
- 批准号:
10456001 - 财政年份:2018
- 资助金额:
$ 30.72万 - 项目类别:
Controllable In Vivo Genome Editing for Immune-Checkpoint Blockade in Solid Tumors
用于实体瘤免疫检查点封锁的可控体内基因组编辑
- 批准号:
9767834 - 财政年份:2018
- 资助金额:
$ 30.72万 - 项目类别:
Controllable In Vivo Genome Editing for Immune-Checkpoint Blockade in Solid Tumors
用于实体瘤免疫检查点封锁的可控体内基因组编辑
- 批准号:
9939589 - 财政年份:2018
- 资助金额:
$ 30.72万 - 项目类别: