Controllable In Vivo Genome Editing for Immune-Checkpoint Blockade in Solid Tumors
用于实体瘤免疫检查点封锁的可控体内基因组编辑
基本信息
- 批准号:9767834
- 负责人:
- 金额:$ 16.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-21 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdvanced Malignant NeoplasmAdverse effectsAgonistAllograftingAntibodiesAntigen-Antibody ComplexAntitumor ResponseBiodistributionCRISPR/Cas technologyCancer PatientCell Culture TechniquesClinicalClinical ResearchClustered Regularly Interspaced Short Palindromic RepeatsColon AdenocarcinomaCombination immunotherapyCombined Modality TherapyComplexCoupledDNA Double Strand BreakDNA SequenceDataDevelopmentDisease remissionDrug KineticsEndocytosisEngineeringGene DeletionGenesGeneticGenomeGuide RNAHumanHybridsImmuneImmune checkpoint inhibitorImmune responseImmune systemImmunityImmunologicsImmunooncologyImmunosuppressive AgentsImmunotherapyIn VitroIndividualInsect VirusesLeadLightMC38Magnetic nanoparticlesMagnetismMalignant NeoplasmsMediatingModelingModificationMusNatural ImmunityNonhomologous DNA End JoiningNormal tissue morphologyOX40OrganPD-1 blockadePDCD1LG1 genePancreatic Ductal AdenocarcinomaPathologic ProcessesPathway interactionsPhenotypeProteinsSignal TransductionSolid NeoplasmSpecificitySystemTestingTherapeuticTherapeutic EffectTissuesTreatment EfficacyTumor ImmunityTumor TissueViralViral Vectoranti-canceranti-tumor immune responsebasecancer heterogeneitycancer immunotherapycancer typeclinical applicationclinical translationdesignengineered nucleasesgene delivery systemgenome editinggenotoxicityhuman diseaseimage guidedimmune checkpointimmune checkpoint blockadeimmunoengineeringimmunogenicin vivoindividual patientinsertion/deletion mutationiron oxide nanoparticlemagnetic fieldmouse modelmultiplexed imagingnovelnucleasepatient subsetspersonalized strategiespreclinical studyresponsesuccesstherapeutic genome editingtransduction efficiencytumortumor microenvironmentvectorvector-inducedviral nanoparticle
项目摘要
Project Summary
The blockade of immune-checkpoint pathways has emerged as a promising therapeutic strategy for a variety
of cancers. However, the diverse tumor responses to immunotherapy seen in preclinical and clinical studies
prompt the development of combination immunotherapies that can be tailored to the complex immune milieu
of individual patients. On the other hand, the severe adverse effects associated with the combination therapies
with multiple antagonist antibodies address the necessity for alternative safe and effective therapeutic
approaches. In light of this, we aim to develop a hybrid nanoparticle-viral vector system for CRISPR/Cas9-
based in vivo therapeutic genome editing, which will be used for multiplexed disruption of immune suppressive
pathways in the tumor microenvironment. CRISPR/Cas9 systems are very efficient in generating DNA double-
strand breaks, thus disrupting genes through the non-homologous end-joining (NHEJ) pathway. However,
inducing uncontrolled CRISPR/Cas9 activities in vivo may lead to systemic genotoxicity. We will develop a
novel in vivo gene delivery system that integrates a baculoviral vector (BV) with magnetic nanoparticles
(MNPs). Our studies have shown that by taking advantage of the interplay between the MNP-mediated BV
margination and endocytosis and the innate immunity against insect viruses, this delivery system can provide
spatial and temporal control of CRISPR/Cas9 activity. We will use the MNP-BV system to deliver optimized
CRISPR/Cas9 for gene disruption of immune suppressive signals PD-L1 and TGF- in the tumor tissue. We
will evaluate CRISPR/Cas9 induced anti-tumor immune responses using two well-established mouse models,
an immunogenic model (MC38) where monotherapy with PD-1 blockade is sufficient, and non-immunogenic
models pancreatic ductal adenocarcinoma (PDAC) which portrays most non-immunogenic human solid
tumors that require combination strategies. In aim 1 studies, we will design and optimize CRISPR/Cas9
gRNAs for targeting PD-L1 and TGF-, package Cas9 and gRNAs into a BV vector, and construct the MNP-
BV system. In aim 2 studies, we will evaluate MNP-BV-induced multiplexed gene disruption in cell culture,
and determine the on-target and off-target indel rates. In aim 3 studies, we will test the controlled in vivo
delivery of CRISPR/Cas9, determine the immunological and therapeutic effects of local gene disruption vs.
systemic blockade with antagonist antibody in mouse tumor models. The success of the proposed studies will
provide a multiplexed intratumoral immunoengineering platform and pave the way for the clinical translation
of a highly efficient in vivo genome editing strategy for personalized cancer immunotherapy.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sheng Tong其他文献
Sheng Tong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sheng Tong', 18)}}的其他基金
Precise in vivo gene editing of HSPC for the treatment of genetic hematologic diseases
HSPC体内精准基因编辑治疗遗传性血液病
- 批准号:
10548540 - 财政年份:2023
- 资助金额:
$ 16.94万 - 项目类别:
Controllable In Vivo Genome Editing for Immune-Checkpoint Blockade in Solid Tumors
用于实体瘤免疫检查点封锁的可控体内基因组编辑
- 批准号:
10456001 - 财政年份:2018
- 资助金额:
$ 16.94万 - 项目类别:
Controllable In Vivo Genome Editing for Immune-Checkpoint Blockade in Solid Tumors
用于实体瘤免疫检查点封锁的可控体内基因组编辑
- 批准号:
9939589 - 财政年份:2018
- 资助金额:
$ 16.94万 - 项目类别:
Controllable In Vivo Genome Editing for Immune-Checkpoint Blockade in Solid Tumors
用于实体瘤免疫检查点封锁的可控体内基因组编辑
- 批准号:
10047963 - 财政年份:2018
- 资助金额:
$ 16.94万 - 项目类别:














{{item.name}}会员




