Precise in vivo gene editing of HSPC for the treatment of genetic hematologic diseases
HSPC体内精准基因编辑治疗遗传性血液病
基本信息
- 批准号:10548540
- 负责人:
- 金额:$ 22.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAllogenicAutologousAutologous TransplantationBackBasic ScienceBinding SitesBlood VesselsBone MarrowBone Marrow CellsBone Marrow PurgingCRISPR/Cas technologyCell TherapyCellsChromosome MappingClinical TreatmentClustered Regularly Interspaced Short Palindromic RepeatsDNADNA SequenceDNA Sequence AlterationDNA cassetteDiseaseEndotheliumEngraftmentExtravasationFaceFemurFutureGene DeliveryGene MutationGenesGeneticGuide RNAHematological DiseaseHematopoiesisHematopoieticHematopoietic stem cellsHemoglobinopathiesHumanImmunologicsIn SituInfusion proceduresInsect VirusesMagnetic nanoparticlesMagnetismMammalian CellMediatingMessenger RNAMethodsMicroRNAsMusMutationMyelogenousNanotechnologyPatientsPermeabilityPopulationPost-Translational RegulationRegulator GenesRegulatory ElementRiskSickle Cell AnemiaSiteSpecificitySystemTechniquesTherapeuticToxic effectTransfectionTranslation InitiationTransplantationUntranslated RNAViral Vectoradaptive immunitybeta Globinbeta Thalassemiaclinical applicationclinical translationcomplement systemcostcurative treatmentsdelivery vehicledesigngene correctiongenotoxicityin vivointravenous injectionlipid nanoparticlemRNA Translationmagnetic fieldmouse modelmultidisciplinarynanomedicinenanoparticlenovelnucleasepreclinical studyself-renewalstem cell biologystem cellssuccesssynthetic biologytargeted deliverytherapeutic targettooltransgene deliverytranslational potentialvector
项目摘要
Summary
CRISPR/cas9 gene editing has shown great promise for the treatment of genetic hematologic
disorders including sickle cell disease and β-thalassemia. Current therapeutic strategies are
primarily focused on ex vivo gene editing of autologous patient-derived hematopoietic
stem/progenitor cells (HSPCs), which require isolation of patients’ HSPCs, ex vivo gene editing,
selection and expansion of corrected HSPCs, and transplantation back into the patients.
Despite its initial success, the clinical translation of this technique is hampered by the difficulties
in ex vivo processing of HSPCs, the risks associated with myeloablation, the low engraftment
efficiency, and the prohibitively high cost of individualized cell therapy. Recent studies have
shown that HSPCs are sustained in specialized niches in the adult bone marrow. HSPC niches
are located near the sinusoidal blood vessels, where the fenestrated endothelium is highly
permeable to nanoparticles and viral vectors. To this end, we propose that the HSPCs in the
bone marrow can be gene-edited by CRISPR/cas9 in situ. However, in vivo CRISPR/cas9 gene
editing can have substantial off-target effects due to the systemic dissemination of the delivery
vehicles and the non-specific activities of the cas9 nuclease. Recently, we developed a novel
gene-editing platform that combines the baculoviral vector with magnetic nanoparticles (MNP-
BV). Compared with conventional viral vectors, the baculoviral vector can transduce a broad
range of mammalian cells without replication. MNP-BV uses an external magnetic field and the
intrinsic complement system as the on- and off-switch for site-specific transgene delivery. In this
project, we will develop an MNP-BV-based gene-editing technique for precise gene editing of
HSPCs in the bone marrow. MNP-BV will be administrated via intraosseous infusion. We will
design a magnetic targeting method to enhance the retention of MNP-BV in the bone marrow
and the extravasation of MNP-BV to the perisinusoidal niches. Furthermore, the baculoviral
vector has a large DNA loading capacity (>38 kb) and thus can deliver inducible cas9 or gRNA
expression cassettes targeting specific cell populations. We will design gRNAs that can only be
activated by microRNAs (miRNAs) highly expressed in HSPCs. The central hypothesis is that
by combining intraosseous infusion, magnetic targeting, and miRNA-mediated posttranslational
regulation, the MNP-BV system can efficiently and precisely transduce HSPCs in the bone
marrow and correct hematological diseases-associated gene mutations. The success of this
project will pave the way for developing an effective and low-cost cure for a range of
hematological diseases.
概括
CRISPR/CAS9基因编辑对治疗遗传血液学的巨大希望
包括镰状细胞疾病和β-甲性疾病在内的疾病。当前的治疗策略是
首先专注于自体患者造血的体内基因编辑
茎/祖细胞(HSPC),需要分离患者的HSPC,离体基因编辑,
校正的HSPC的选择和扩展,并将其移植回患者。
尽管最初取得了成功,但该技术的临床翻译受到困难的阻碍
在HSPC的离体处理中,与骨髓相关的风险,低植入
效率和禁止的个性化细胞疗法的高成本。最近的研究
表明HSPC在成年骨髓中的专门壁ni中维持。 HSPC利基
位于正弦血管附近,那里的内皮高度高
可渗透到纳米颗粒和病毒载体。为此,我们提出了HSPC
骨髓可以由CRISPR/CAS9原位对基因编辑。但是,体内CRISPR/CAS9基因
由于交付的全身传播,编辑可能会产生重大的脱靶效应
CAS9核酸酶的车辆和非特异性活动。最近,我们开发了一本小说
基因编辑平台将细菌病毒载体与磁性纳米颗粒(MNP-
BV)。与常规病毒载体相比,杆状病毒载体可以转导宽
无复制的哺乳动物细胞范围。 MNP-BV使用外部磁场,
内在的完成系统作为特定地点转换交付的开关和偏置。在这个
项目,我们将开发一种基于MNP-BV的基因编辑技术,以精确的基因编辑
骨髓中的HSPC。 MNP-BV将通过骨内输注进行管理。我们将
设计一种磁性靶向方法,以增强MNP-BV在骨髓中的保留
MNP-BV向核苷壁细分市场的渗出。此外,细菌病毒
向量具有较大的DNA载荷能力(> 38 kb),因此可以提供可诱导的Cas9或GRNA
靶向特定细胞群的表达盒。我们将设计只能
在HSPC中高表达的microRNA(miRNA)激活。中心假设是
通过结合骨内输注,磁靶向和miRNA介导的翻译后
调节,MNP-BV系统可以有效,精确地翻译骨骼中的HSPC
骨髓和正确的血液疾病相关基因突变。这个成功
项目将为开发有效和低成本的治疗铺平道路
血液学疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sheng Tong其他文献
Sheng Tong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sheng Tong', 18)}}的其他基金
Controllable In Vivo Genome Editing for Immune-Checkpoint Blockade in Solid Tumors
用于实体瘤免疫检查点封锁的可控体内基因组编辑
- 批准号:
10456001 - 财政年份:2018
- 资助金额:
$ 22.95万 - 项目类别:
Controllable In Vivo Genome Editing for Immune-Checkpoint Blockade in Solid Tumors
用于实体瘤免疫检查点封锁的可控体内基因组编辑
- 批准号:
9767834 - 财政年份:2018
- 资助金额:
$ 22.95万 - 项目类别:
Controllable In Vivo Genome Editing for Immune-Checkpoint Blockade in Solid Tumors
用于实体瘤免疫检查点封锁的可控体内基因组编辑
- 批准号:
9939589 - 财政年份:2018
- 资助金额:
$ 22.95万 - 项目类别:
Controllable In Vivo Genome Editing for Immune-Checkpoint Blockade in Solid Tumors
用于实体瘤免疫检查点封锁的可控体内基因组编辑
- 批准号:
10047963 - 财政年份:2018
- 资助金额:
$ 22.95万 - 项目类别:
相似国自然基金
肿瘤球混合堆砌-诱导分化构建同源性血管化结肠癌类器官用于血管发生干预靶点筛选
- 批准号:82373453
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
非小细胞肺癌中靶向抑制同源性重组修复增敏免疫检查点抑制剂疗效的研究和机制探索
- 批准号:82103045
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
非小细胞肺癌中靶向抑制同源性重组修复增敏免疫检查点抑制剂疗效的研究和机制探索
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
FHF2对肥厚心肌钙致钙释放的影响及其机制研究
- 批准号:81900249
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
PTEN通过激活细胞程序性坏死通路促进APP淀粉样蛋白代谢的机制研究
- 批准号:81901116
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
相似海外基金
Label-free single-cell imaging for quality control of cardiomyocyte biomanufacturing
用于心肌细胞生物制造质量控制的无标记单细胞成像
- 批准号:
10675976 - 财政年份:2023
- 资助金额:
$ 22.95万 - 项目类别:
Project 4: Off-the-shelf engineered cord blood-derived natural killer cells for the treatment acute lymphoblastic leukemia
项目 4:现成的工程化脐带血自然杀伤细胞,用于治疗急性淋巴细胞白血病
- 批准号:
10931069 - 财政年份:2023
- 资助金额:
$ 22.95万 - 项目类别:
Clonal hematopoiesis and inherited genetic variation in sickle cell disease
镰状细胞病的克隆造血和遗传变异
- 批准号:
10638404 - 财政年份:2023
- 资助金额:
$ 22.95万 - 项目类别:
Novel therapeutic gene editing to induce fetal hemoglobin for sickle cell disease
诱导胎儿血红蛋白治疗镰状细胞病的新型治疗性基因编辑
- 批准号:
10587901 - 财政年份:2023
- 资助金额:
$ 22.95万 - 项目类别:
Immuno-Isolating capsule for delivery of cell-based therapy for restoration of ovarian endocrine function in an animal model
免疫隔离胶囊用于在动物模型中提供基于细胞的治疗以恢复卵巢内分泌功能
- 批准号:
10677892 - 财政年份:2022
- 资助金额:
$ 22.95万 - 项目类别: