Structural Nested Models for Assessing the Safety and Effectiveness of Generic Drugs

用于评估仿制药安全性和有效性的结构嵌套模型

基本信息

  • 批准号:
    9106268
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-15 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

Project Summary The U.S. Food and Drug Administration (FDA) expects that approved generic products provide the same quality, safety, and efficacy as the corresponding brand. Despite this, some clinicians and patients are reluctant to use generic medications due to fears of lesser effectiveness or concerns about toxicities or side effects. The FDA seeks to ensure that patients can confidently access generic drugs, and that substandard products be removed from market. This requires appropriate pre-marketing regulation and post-marketing surveillance to understand generic drugs’ clinical effects. We propose methods to enhance the FDA’s ability to evaluate the safety and effectiveness of generic drugs relative to their branded counterparts using healthcare utilization database (claims data), and electronic medical records (EMR). There are major challenges in making valid causal inferences regarding the comparative effectiveness of generics and branded drugs using these secondary sources of data. Some of the key challenges are: misclassification of outcomes, missing key variables for confounder adjustment, and data that are potentially informatively missing due to patient losses to follow up. Our first aim is to develop a rigorous, state-of-art, causal inference approach for comparing the toxicity and efficacy of generics and branded therapeutics that will be applicable to claims databases. Our second aim is to leverage the EMR data linked to claims, to enhance the methods developed in Aim 1. In the third aim, we propose to train the FDA scientists from the Office of Generic Drugs (OGD) in implementing our methods. We propose to apply o ur approach to the study of commonly used drugs in breast cancer: aromatase inhibitors, for which generics are available. We will use a linked data set from Optum Labs which includes both claims data and EHR data. This database has in excess of 150 million individual patient records for claims and 30 million patients for claims-EMR covering 10 years or more of patient experience. Specific Aim 1. To develop a state-of-art causal inference approach for comparing the toxicity and efficacy of generics and branded drugs that will be applicable to healthcare utilization (claims) databases. Specific Aim 2. To demonstrate the added value of linked claim-EMR data for surveillance of generic drug effectiveness and safety. Specific Aim 3. To provide training to the FDA scientists from OGD in implementing our methodological approach.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ravi Varadhan其他文献

Ravi Varadhan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ravi Varadhan', 18)}}的其他基金

Biostatistics Core
生物统计学核心
  • 批准号:
    10671630
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
Biostatistics Core
生物统计学核心
  • 批准号:
    10197007
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:

相似海外基金

NOVEL APPROACHES TO COMPARING THE PREDICTIVE ACCURACY OF NESTED MODELS IN DATA RICH AND HETEROGENEOUS PREDICTOR ENVIRONMENTS
比较数据丰富且异构预测器环境中嵌套模型的预测准确性的新方法
  • 批准号:
    ES/W000989/1
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Research Grant
Regional Climate Modelling: Probing the strengths and limitations of dynamical downscaling with nested models
区域气候建模:利用嵌套模型探讨动态降尺度的优点和局限性
  • 批准号:
    42544-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Regional Climate Modelling: Probing the strengths and limitations of dynamical downscaling with nested models
区域气候建模:利用嵌套模型探讨动态降尺度的优点和局限性
  • 批准号:
    42544-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Regional Climate Modelling: Probing the strengths and limitations of dynamical downscaling with nested models
区域气候建模:利用嵌套模型探讨动态降尺度的优点和局限性
  • 批准号:
    446045-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Regional Climate Modelling: Probing the strengths and limitations of dynamical downscaling with nested models
区域气候建模:利用嵌套模型探讨动态降尺度的优点和局限性
  • 批准号:
    42544-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Regional Climate Modelling: Probing the strengths and limitations of dynamical downscaling with nested models
区域气候建模:利用嵌套模型探讨动态降尺度的优点和局限性
  • 批准号:
    446045-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Regional Climate Modelling: Probing the strengths and limitations of dynamical downscaling with nested models
区域气候建模:利用嵌套模型探讨动态降尺度的优点和局限性
  • 批准号:
    42544-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Regional Climate Modelling: Probing the strengths and limitations of dynamical downscaling with nested models
区域气候建模:利用嵌套模型探讨动态降尺度的优点和局限性
  • 批准号:
    446045-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Collaborative Research: Downscaling global climate projections to the ecosystems of the Bering Sea with nested biophysical models
合作研究:利用嵌套生物物理模型将全球气候预测缩小到白令海生态系统
  • 批准号:
    0732534
  • 财政年份:
    2007
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: Downscaling global climate projections to the ecosystems of the Bering Sea with nested biophysical models
合作研究:利用嵌套生物物理模型将全球气候预测缩小到白令海生态系统
  • 批准号:
    0732431
  • 财政年份:
    2007
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了