Understanding the Benefits of Infrared Nerve Stimulators for Neural Interfaces
了解红外神经刺激器对神经接口的好处
基本信息
- 批准号:8640907
- 负责人:
- 金额:$ 48.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-03-01 至 2017-02-28
- 项目状态:已结题
- 来源:
- 关键词:AcousticsAction PotentialsAcuteAnimal ModelAnimalsAreaAuditory Evoked PotentialsAuditory systemBiological ModelsCaviaChronicCochleaCochlear ImplantsCollaborationsDataDevelopmentDevicesDoseElectric StimulationElectrodesEnvironmentEvoked Potentials, Auditory, Brain StemFelis catusFiberFluorescenceFrequenciesGoalsHearingHearing Impaired PersonsHeatingHistologyHumanImplantIndustryInferior ColliculusInkLaboratory ResearchLasersLightLocationMapsMasksMeasurementMeasuresMethodsModiolusMusicNational Institute on Deafness and Other Communication DisordersNerveNeuronsNeurophysiology - biologic functionOperative Surgical ProceduresOpticsPatternPerformancePhasePhysiologic pulsePhysiologicalPopulationPreparationPropertyPulse RatesRadiationResearchResourcesRisk ManagementSafetyShapesSiteSmall Business Technology Transfer ResearchSourceSpottingsStimulusSystemTechnologyTemperatureTestingTimeTissuesUniversitiesWidthWireless Technologybasedesignganglion cellimplantationimprovedin vivoinnovationinsightminiaturizeneural prosthesisneural stimulationneuroprosthesispre-clinicalprototyperelating to nervous systemresearch studyresponseround windowspeech recognitionspiral ganglion
项目摘要
DESCRIPTION (provided by applicant): The goal for neuroprostheses is to restore neural function to a condition having the fidelity of a healthy system. However, contemporary neural prostheses, including cochlear implants, are not able to achieve this goal. The devices use electrical current to stimulate the neurons, which spreads in the tissue and consequently does not allow stimulation of focused populations of neurons. Therefore, high fidelity stimulation is no possible. In our model system, the cochlea, it has been argued that the performance of cochlear implant users could be increased significantly if more discrete locations of neurons situated along the electrode could be stimulated simultaneously. This might be possible with devices that use focal optical radiation to stimulate neurons. Today we know that infrared neural stimulation (INS) is possible, that stimulation rates can be achieved that allow encoding of acoustic information, that the spatial selectivity in the cochlea is about five times more selective than electrical stimulation, and that single channel stimulation in chronic experiments shows no functional damage of the cochlea over at least six weeks. The five-year project proposed here is a logical progression of our previous experiments. The aims include validating that the selectivity of INS will result in a larger number of independent channels, demonstrating that a three-channel device can safely stimulate an implanted cochlea over several weeks, and showing that each channel of multichannel INS can independently encode information to be perceived by the auditory system. At the conclusion of the project period we intend to present a prototype for a multi-channel neural interface for the human, here a cochlear implant. To determine the minimum channel separation for independent stimulation, we will implant a three-channel device in deaf cats. Recordings from the inferior colliculus will be used to construct spatial tuning curves (STCs). Non-overlapping STCs indicate separation of the channels. The distance between the stimulation sources will be altered systematically until independent stimulation at neighboring stimulation sources is obtained. By varying stimulus parameters such as the repetition rate, the pulse shape, and the delay between neighboring channels, the experiments will also provide information on the temporal properties of optical stimulation. Long-term stimulation after chronic implantation of a three-channel device into a cat cochlea will determine the safety. Evoked auditory responses will be measured and will provide information on cochlear function and safety. Results will be confirmed through histology. Measurements with temperature sensitive ink will provide important information on the heat load during stimulation. At the conclusion of this project, a prototype human optical cochlear implant will be constructed based on the physical and the optical requirements.
描述(由申请人提供):神经假体的目标是将神经功能恢复到具有健康系统保真度的状态。然而,当代的神经假体,包括人工耳蜗,无法实现这一目标。这些设备使用电流来刺激神经元,神经元在组织中扩散,因此不允许刺激集中的神经元群。因此,高保真刺激是不可能的。在我们的耳蜗模型系统中,有人认为,如果可以同时刺激位于电极上的更多离散位置的神经元,则可以显着提高人工耳蜗使用者的表现。通过使用聚焦光辐射刺激神经元的设备,这可能是可能的。今天,我们知道红外神经刺激 (INS) 是可能的,可以实现允许对声学信息进行编码的刺激速率,耳蜗的空间选择性大约是电刺激的五倍,并且长期实验中的单通道刺激显示耳蜗在至少六周内没有功能损伤。这里提出的五年项目是我们之前实验的逻辑进展。目的包括验证 INS 的选择性将产生更多的独立通道,证明三通道设备可以在几周内安全地刺激植入的耳蜗,并证明多通道 INS 的每个通道都可以独立编码听觉系统感知的信息。在项目结束时,我们打算展示一个人类多通道神经接口的原型,这里是人工耳蜗。为了确定独立刺激的最小通道间隔,我们将在聋猫体内植入一个三通道装置。下丘的记录将用于构建空间调谐曲线(STC)。不重叠的 STC 表示通道的分离。刺激源之间的距离将被系统地改变,直到获得相邻刺激源处的独立刺激。通过改变重复率、脉冲形状和相邻通道之间的延迟等刺激参数,实验还将提供有关光刺激的时间特性的信息。将三通道装置长期植入猫耳蜗后的长期刺激将决定其安全性。将测量诱发的听觉反应,并提供有关耳蜗功能和安全性的信息。结果将通过组织学证实。使用温度敏感墨水进行的测量将提供有关刺激过程中热负荷的重要信息。该项目结束时,将根据物理和光学要求构建人体光学人工耳蜗原型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CLAUS-PETER RICHTER其他文献
CLAUS-PETER RICHTER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CLAUS-PETER RICHTER', 18)}}的其他基金
Understanding the Benefits of Optical Nerve Stimulators for Neural Interfaces
了解视神经刺激器对神经接口的好处
- 批准号:
9933646 - 财政年份:2019
- 资助金额:
$ 48.73万 - 项目类别:
Understanding the Benefits of Infrared Nerve Stimulators for Neural Interfaces
了解红外神经刺激器对神经接口的好处
- 批准号:
8297930 - 财政年份:2012
- 资助金额:
$ 48.73万 - 项目类别:
Understanding the Benefits of Infrared Nerve Stimulators for Neural Interfaces
了解红外神经刺激器对神经接口的好处
- 批准号:
8434109 - 财政年份:2012
- 资助金额:
$ 48.73万 - 项目类别:
Understanding the Benefits of Infrared Nerve Stimulators for Neural Interfaces
了解红外神经刺激器对神经接口的好处
- 批准号:
9012072 - 财政年份:2012
- 资助金额:
$ 48.73万 - 项目类别:
Development of a Novel Laser Instrument for Advanced Medical Applications
开发用于先进医疗应用的新型激光仪器
- 批准号:
8299462 - 财政年份:2011
- 资助金额:
$ 48.73万 - 项目类别:
Development of a Novel Laser Instrument for Advanced Medical Applications
开发用于先进医疗应用的新型激光仪器
- 批准号:
8531011 - 财政年份:2011
- 资助金额:
$ 48.73万 - 项目类别:
相似海外基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 48.73万 - 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
- 批准号:
422915148 - 财政年份:2019
- 资助金额:
$ 48.73万 - 项目类别:
Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
- 批准号:
1752274 - 财政年份:2018
- 资助金额:
$ 48.73万 - 项目类别:
Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
- 批准号:
18H03539 - 财政年份:2018
- 资助金额:
$ 48.73万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
- 批准号:
9588470 - 财政年份:2018
- 资助金额:
$ 48.73万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10009724 - 财政年份:2018
- 资助金额:
$ 48.73万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10467225 - 财政年份:2018
- 资助金额:
$ 48.73万 - 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
- 批准号:
9423398 - 财政年份:2017
- 资助金额:
$ 48.73万 - 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
- 批准号:
9357409 - 财政年份:2016
- 资助金额:
$ 48.73万 - 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
- 批准号:
16K07006 - 财政年份:2016
- 资助金额:
$ 48.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




