Biophysical controls of vertebrate organ regeneration
脊椎动物器官再生的生物物理控制
基本信息
- 批准号:8111705
- 负责人:
- 金额:$ 29.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-08-01 至 2013-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAgingAmputationAnimalsApoptosisApoptoticAreaAxonBasic ScienceBiochemicalBiologicalBiological ModelsBlood VesselsCell ProliferationCellsCellular biologyChemicalsClinicalComplementComplexDataDiseaseDissectionERG geneEmbryoEmbryonic DevelopmentEventExcisionFluorescent DyesFoundationsGenesGeneticGoalsGrowthHumanIndividualInfectionInjuryIon TransportIonsLarvaLinkLiteratureMalignant NeoplasmsMammalsMedicalMembraneModalityMolecularMolecular BiologyMolecular GeneticsMorphogenesisMuscleNatural regenerationNerveNerve RegenerationOrganPathway interactionsPatternPhysiologicalPhysiologyPlayPopulationPotassium ChannelPreclinical Drug EvaluationProcessPropertyProteinsProton PumpReagentResearchRoleSignal TransductionSomitesSpinalSpinal CordStagingStructureSystemTailTechniquesTestingTherapeuticTimeTissuesTranscriptional RegulationUp-RegulationUrsidae FamilyWorkWound HealingXenopusappendagebiological systemsblastemafascinatehigh rewardinsightinterestlarval controllimb regenerationloss of functionmRNA Expressionmembrane fluxmutantnovelorgan regenerationquantumrepairedtissue regenerationtoolvacuolar H+-ATPasevoltage
项目摘要
DESCRIPTION (provided by applicant): The regeneration of tissues and organs lost to injury or disease is a key goal of biomedicine. Induction of regeneration in clinical contexts will require a molecular dissection of the relevant patterning signals operating in animals that are able to regenerate. This field has been dominated by a focus on chemical signals and is ready for fresh approaches to the problem. Our lab merges functional physiology with molecular genetics to understand novel biophysical controls of patterning and use them to control tissue growth. When amputated, the Xenopus tail forms a regeneration bud that rapidly produces a perfect duplicate of the original tail, including nerves, blood vessels, and muscle. Using this powerful vertebrate system, we discovered that endogenous ion fluxes and membrane voltage gradients play a crucial role in regeneration. Our drug screen implicated a H+ pump, a K+ channel, and a Na+ channel as required for regeneration but not for wound healing or primary tail growth; the activity of these transporters establishes a moderate zone of depolarization in the bud that is crucial for regeneration. We used mutant transporter constructs to inhibit or rescue regeneration, demonstrating that H+ flux is necessary and sufficient for inducing regeneration. These biophysical events function upstream of and control: known regeneration marker expression, up-regulation of cell proliferation in the bud, and axon patterning. We propose to begin to understand the role of ion flux in regeneration by characterizing: (1) the time-course and properties of blastema currents, (2) the expression of implicated electrogenic genes, (3) the downstream steps linking membrane voltage to molecular and morphogenetic events during regeneration. Our data provide the first induction of regeneration by molecular modulation of ion flows, and the proposed work will answer the most important open questions in this new field. This proposal incorporates a high degree of novelty because it is focused on a paradigm that has not been previously addressed using molecular genetic tools: electrical controls of regeneration. It is high-reward because it would lay bare a new set of control parameters for the regeneration of a complex vertebrate structure (including spinal cord). This will have important implications for understanding basic morphogenetic mechanisms as well as establishing a foundation for promising medical approaches to augment or induce regeneration in non-regenerating tissues. The ability to regenerate tissues and organs is crucial to the medical management of injury, aging, infection, or surgical removal of cancer. Our work will provide an entirely new modality that may, one day, allow human beings to regenerate important tissues and organs (including muscle and spinal cord).
描述(由申请人提供):因损伤或疾病而丧失的组织和器官的再生是生物医学的一个关键目标。在临床环境中诱导再生将需要在能够再生的动物中操作的相关模式信号的分子解剖。该领域一直以关注化学信号为主,并准备采用新的方法来解决这个问题。我们的实验室将功能生理学与分子遗传学相结合,以了解图案的新型生物物理控制,并使用它们来控制组织生长。当被切断时,爪蟾的尾巴会形成一个再生芽,迅速产生一个完整的原始尾巴的复制品,包括神经,血管和肌肉。使用这个强大的脊椎动物系统,我们发现内源性离子通量和膜电压梯度在再生中起着至关重要的作用。我们的药物筛选涉及再生所需的H+泵、K+通道和Na+通道,但不是伤口愈合或初级尾生长所需的;这些转运蛋白的活性在芽中建立了一个中度去极化区,这对再生至关重要。我们使用突变体转运蛋白构建体来抑制或拯救再生,证明H+通量是诱导再生所必需的且足够的。这些生物物理事件的上游功能和控制:已知的再生标志物的表达,在芽中的细胞增殖的上调,和轴突图案。我们建议开始了解离子通量在再生中的作用,通过表征:(1)芽基电流的时间过程和性质,(2)牵连的产电基因的表达,(3)下游步骤连接膜电压的分子和再生过程中的形态发生事件。我们的数据提供了第一个诱导再生的离子流的分子调制,和拟议的工作将回答最重要的开放问题,在这个新的领域。这项建议包含了高度的新奇,因为它集中在一个范例,以前没有解决使用分子遗传工具:再生的电控制。这是高回报的,因为它将为复杂的脊椎动物结构(包括脊髓)的再生提供一套新的控制参数。这将对理解基本的形态发生机制以及为有前途的医学方法建立基础以增强或诱导非再生组织的再生具有重要意义。再生组织和器官的能力对于损伤、衰老、感染或手术切除癌症的医疗管理至关重要。我们的工作将提供一种全新的模式,有一天可能使人类再生重要的组织和器官(包括肌肉和脊髓)。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Endogenous Bioelectric Signaling Networks: Exploiting Voltage Gradients for Control of Growth and Form.
- DOI:10.1146/annurev-bioeng-071114-040647
- 发表时间:2017-06-21
- 期刊:
- 影响因子:9.7
- 作者:
- 通讯作者:
Inferring regulatory networks from experimental morphological phenotypes: a computational method reverse-engineers planarian regeneration.
- DOI:10.1371/journal.pcbi.1004295
- 发表时间:2015-06
- 期刊:
- 影响因子:4.3
- 作者:Lobo D;Levin M
- 通讯作者:Levin M
Planform: an application and database of graph-encoded planarian regenerative experiments.
Planform:图形编码涡虫再生实验的应用程序和数据库。
- DOI:10.1093/bioinformatics/btt088
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:Lobo,Daniel;Malone,TaylorJ;Levin,Michael
- 通讯作者:Levin,Michael
The bioelectric code: An ancient computational medium for dynamic control of growth and form.
- DOI:10.1016/j.biosystems.2017.08.009
- 发表时间:2018-02
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL LEVIN其他文献
MICHAEL LEVIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL LEVIN', 18)}}的其他基金
Automated Analysis of Learning and Memory for Neuro-Developmental Studies
用于神经发育研究的学习和记忆自动分析
- 批准号:
7653067 - 财政年份:2009
- 资助金额:
$ 29.01万 - 项目类别:
Automated Analysis of Learning and Memory for Neuro-Developmental Studies
用于神经发育研究的学习和记忆自动分析
- 批准号:
7915296 - 财政年份:2009
- 资助金额:
$ 29.01万 - 项目类别:
Biophysical controls of vertebrate organ regeneration
脊椎动物器官再生的生物物理控制
- 批准号:
7751988 - 财政年份:2008
- 资助金额:
$ 29.01万 - 项目类别:
Novel Mechanism of Induction of Eye Tissue: Katp Channel Modulation
眼组织诱导的新机制:Katp 通道调制
- 批准号:
7776603 - 财政年份:2008
- 资助金额:
$ 29.01万 - 项目类别:
Novel Mechanism of Induction of Eye Tissue: Katp Channel Modulation
眼组织诱导的新机制:Katp 通道调制
- 批准号:
7661499 - 财政年份:2008
- 资助金额:
$ 29.01万 - 项目类别:
Novel Mechanism of Induction of Eye Tissue: Katp Channel Modulation
眼组织诱导的新机制:Katp 通道调制
- 批准号:
7906653 - 财政年份:2008
- 资助金额:
$ 29.01万 - 项目类别:
Novel Mechanism of Induction of Eye Tissue: Katp Channel Modulation
眼组织诱导的新机制:Katp 通道调制
- 批准号:
7372064 - 财政年份:2008
- 资助金额:
$ 29.01万 - 项目类别:
MEMBRANE VOLTAGE IN SPINAL CORD/MUSCLE REGENERATION
脊髓/肌肉再生中的膜电压
- 批准号:
7953865 - 财政年份:2008
- 资助金额:
$ 29.01万 - 项目类别:
Biophysical controls of vertebrate organ regeneration
脊椎动物器官再生的生物物理控制
- 批准号:
7659608 - 财政年份:2008
- 资助金额:
$ 29.01万 - 项目类别:
相似海外基金
Interplay between Aging and Tubulin Posttranslational Modifications
衰老与微管蛋白翻译后修饰之间的相互作用
- 批准号:
24K18114 - 财政年份:2024
- 资助金额:
$ 29.01万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Canadian Brain Health and Cognitive Impairment in Aging Knowledge Mobilization Hub: Sharing Stories of Research
加拿大大脑健康和老龄化认知障碍知识动员中心:分享研究故事
- 批准号:
498288 - 财政年份:2024
- 资助金额:
$ 29.01万 - 项目类别:
Operating Grants
EMNANDI: Advanced Characterisation and Aging of Compostable Bioplastics for Automotive Applications
EMNANDI:汽车应用可堆肥生物塑料的高级表征和老化
- 批准号:
10089306 - 财政年份:2024
- 资助金额:
$ 29.01万 - 项目类别:
Collaborative R&D
関節リウマチ患者のSuccessful Agingに向けたフレイル予防対策の構築
类风湿性关节炎患者成功老龄化的衰弱预防措施的建立
- 批准号:
23K20339 - 财政年份:2024
- 资助金额:
$ 29.01万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Baycrest Academy for Research and Education Summer Program in Aging (SPA): Strengthening research competencies, cultivating empathy, building interprofessional networks and skills, and fostering innovation among the next generation of healthcare workers t
Baycrest Academy for Research and Education Summer Program in Aging (SPA):加强研究能力,培养同理心,建立跨专业网络和技能,并促进下一代医疗保健工作者的创新
- 批准号:
498310 - 财政年份:2024
- 资助金额:
$ 29.01万 - 项目类别:
Operating Grants
Life course pathways in healthy aging and wellbeing
健康老龄化和福祉的生命历程路径
- 批准号:
2740736 - 财政年份:2024
- 资助金额:
$ 29.01万 - 项目类别:
Studentship
I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
- 批准号:
2406592 - 财政年份:2024
- 资助金额:
$ 29.01万 - 项目类别:
Standard Grant
NSF PRFB FY 2023: Connecting physiological and cellular aging to individual quality in a long-lived free-living mammal.
NSF PRFB 2023 财年:将生理和细胞衰老与长寿自由生活哺乳动物的个体质量联系起来。
- 批准号:
2305890 - 财政年份:2024
- 资助金额:
$ 29.01万 - 项目类别:
Fellowship Award
虚弱高齢者のSuccessful Agingを支える地域課題分析指標と手法の確立
建立区域问题分析指标和方法,支持体弱老年人成功老龄化
- 批准号:
23K20355 - 财政年份:2024
- 资助金额:
$ 29.01万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
「ケア期間」に着目したbiological aging指標の開発
开发聚焦“护理期”的生物衰老指数
- 批准号:
23K24782 - 财政年份:2024
- 资助金额:
$ 29.01万 - 项目类别:
Grant-in-Aid for Scientific Research (B)